Welcome!

Linux Authors: Pat Romanski, Carmen Gonzalez, Elizabeth White, Victoria Livschitz, Ignacio M. Llorente

Related Topics: Linux

Linux: Article

Why Recovering a Deleted Ext3 File Is Difficult . . .

and why you should back up important files

The file we are trying to recover is /home/carrier/oops.dat and we can see it previously allocated to inode 415,926. The "(28)" shows us that the directory entry structure is 28 bytes long, but we don't care about that.

File Carving Recovery
The first recovery technique, called file carving, uses signatures from the deleted file. Many file types have standard values in the first bytes of the file header, and this recovery technique looks for the header value of the deleted file to determine where the file may have started. For example, JPEG files start with 0xffd8 and end with 0xffd9. To recover a deleted JPEG file, we would look at the first two bytes of each block and look for one with 0xffd8 in the first two bytes. When we find such a block, we look for a block that has 0xffd9 in it. The data in between are assumed to be the file. Unfortunately, not all file types have a standard footer signature, so determining where to end is difficult. An example of an open source tool that does file carving is foremost and there are several commercial options as well.

We can run a tool like foremost on the full file system, but we'll probably end up with way too many files, including allocated ones. We therefore want to run it on as little data as possible. The first way we can restrict the data size is to examine only the block group where the file was located. Remember that inodes and blocks for a file are allocated to the same block group, if there is room. In our case, we know which inode the file used and therefore we can examine only the blocks in the same group. The imap command in debugfs will tell us to which block group an inode belongs:

debugfs: imap <415926>
Inode 415926 is part of block group 25
    located at block 819426, offset 0x0a80

The output of the fsstat command in TSK would also tell us this:

# fsstat /dev/hda5
[...]
Group: 25:
   Inode Range: 408801 - 425152
   Block Range: 819200 - 851967

We next need to determine the blocks that are in the block group of the deleted file. We can see them in the previous fsstat output, but if we're using debugfs , we'll need to calculate the range. The stats command gives us the number of blocks in each group:

debugfs: stats
[...]
Blocks per group: 32768
[...]

Since we are looking at block group 25, then the block range is from 819,200 (25 * 32,768) to 851,967 (26 * 32,768 - 1). By focusing on only these blocks, we are looking at 128MB instead of the full file system. Although if we can't find the file in these blocks, we'll still need to search the full file system.

The next step to reduce the data we analyze is to extract the unallocated blocks from the file system because that is where our deleted file will be located. debugfs does not currently allow us to extract the unallocated space from only a specific block group, so we will need to use the dls tool from TSK.

# dls /dev/hda5 819200-851867 > /mnt/unalloc.dat

The above command will save the unallocated blocks in block group 25 to a file named /mnt/unalloc.dat. Make sure that this file is on a different file system because otherwise you may end up overwriting your deleted file.

Now we can run the foremost tool on the unallocated data. foremost can recover only file types for which it has been configured. If foremost doesn't have the header signature for the type of the deleted file, you'll need to examine some similar files and customize the configuration file. We can run it as follows:

# foremost -d -i /mnt/unalloc.dat -o /mnt/output/

The -d option will try to detect which blocks are indirect blocks and won't include them in the final output file. The /mnt/output/ directory will contain the files that could be recovered. If your file is not in there, you can expand your search to all unallocated blocks in the file system instead of only the blocks in the block group.

Journal-Based Recovery
The second method for trying to recover the files is to use the journal. We already saw that inode updates are first recorded in the journal, but the important concept here is that the entire block in which an inode is located is recorded in the journal. Therefore, when one inode is updated, the journal will contain copies of other inodes stored in the same block. The previous version of our deleted file's inode may exist in the journal because another file was updated before the deletion.

The easiest way to look for previous versions of the inode is by using the logdump -i command in debugfs:

debugfs: logdump -i <415926>
Inode 415926 is at group 25, block 819426, offset 2688
Journal starts at block 1, transaction 104588
  FS block 819426 logged at sequence 104940, journal block 2687
   (inode block for inode 415926):
   Inode: 415926 Type: regular Mode: 0664 Flags: 0x0
   User: 500 Group: 500 Size: 2048000
   [...]
   Blocks: (0+12): 843274 (IND): 843286
[...]

In this case, we found a previous copy of the inode and the file content blocks are listed on the last line. The last line shows that the first block of the file is 843,274 and the next 12 blocks in the file system are the next 12 blocks in the file. The file is large and requires an indirect block, which is located in block 843,286. So far, all blocks are consecutive and there was no fragmentation. Block 843,286 contains the rest of the block addresses, so we should try to look at a previous version to learn where the rest of the file is located. We can see if there is a copy in the journal using logdump -b:

debugfs: logdump -b 843286 -c

Unfortunately, we don't find a copy of the block that contains the original list of block pointers so, if we want to recover the file, we need to assume that the remaining file content is stored in block 843,287 and onward. A more advanced approach would also consider which blocks are currently allocated and skip over those. The data can be extracted with tools such as dd or the Linux Disk Editor. The journal can also be searched using the jls and jcat tools from TSK.

Conclusion
File recovery with Ext3 is not a trivial matter, which reinforces the concept of making backups of important files. If the file was not fragmented, then searching for its header signature can be useful, but the tool needs to know to ignore the indirect blocks and where to stop copying (not all files have a standard footer signature). Restricting the search to the local block group can help save time. The journal could be useful if files near the deleted file were recently updated and a previous version of the inode existed, but this is not always guaranteed and the file's indirect block may not exist.

References and Bibliography

More Stories By Brian Carrier

Brian Carrier has authored several leading computer forensic tools, including The Sleuth Kit (formerly The @stake Sleuth Kit) and the Autopsy Forensic Browser. He has authored several peer-reviewed conference and journal papers and has created publicly available testing images for forensic tools. Currently pursuing a Ph.D. in Computer Science and Digital Forensics at Purdue University, he is also a research assistant at the Center for Education and Research in Information Assurance and Security
(CERIAS) there. He formerly served as a research scientist at @stake and as the lead for the @stake Response Team and Digital Forensic Labs. Carrier has taught forensics, incident response, and file systems at SANS, FIRST, the @stake Academy, and SEARCH. He is the author of File System Forensic Analysis (Addison-Wesley, ISBN 0321268172).

Comments (6) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
theusr 07/09/09 09:29:00 AM EDT

The figure 2 maybe misleading: the links between the address blocks and the file content are still there (though the address blocks are unallocated), that what's make the recovery possible.

Mike Kay 01/15/08 03:57:07 PM EST

Excellent article. Followed it step by step and successfully recovered a .XLS spreadsheet that had been deleted from the /tmp folder on Ubuntu Gutsy. It also found an associated .jpg that I wasn't looking for!

Saved me hours of retyping. Thanks a lot.

Jahangir 10/22/07 05:26:36 PM EDT

This was really the best article i could find inspite of 3 hrs of googling.

But what if you are trying to recover a 6GB VM.
Since VMware files are not recognized by foremost, how can we get the magic number to get the header for the VM files ??

ruintower 04/23/06 09:07:29 PM EDT

Trackback Added: ext3 undelete;   I “mis-deleted” a big file several days ago. So I umount the the partition immediately and searched the recovery method because I knew (but forgot) some methods to recovery file in Linux. However, the result is disappointed. Alt...

marco 03/13/06 08:04:20 AM EST

U have saved my life.
I had lost all my application files under tomcat with de deploy command... no backup ..gulp
now I have a 128MB ascii file with my lost files, it's great.

U are a GURU,
thanx

marco 03/13/06 08:04:04 AM EST

U have saved my life.
I had lost all my application files under tomcat with de deploy command... no backup ..gulp
now I have a 128MB ascii file with my lost files, it's great.

U are a GURU,
thanx

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.