Welcome!

Linux Containers Authors: Reinhard Brandstädter, Elizabeth White, Flint Brenton, Thanh Tran, Sujoy Sen

Related Topics: Linux Containers

Linux Containers: Article

Understanding the Linux Kernel (Part 1 of 3)

Part 1 of 3

Like any time-sharing system, Linux achieves the magical effect of an apparent simultaneous execution of multiple processes by switching from one process to another in a very short time frame. This article deals with scheduling, which is concerned with when to switch and which process to choose.

The article consists of three parts. Part One introduces the choices made by Linux to schedule processes in the abstract. Part Two discusses the data structures used to implement scheduling and the corresponding algorithm. Finally, Part Three describes the system calls that affect process scheduling.

Scheduling Policy
The scheduling algorithm of traditional Unix operating systems must fulfill several conflicting objectives: fast process response time, good throughput for background jobs, avoidance of process starvation, reconciliation of the needs of low- and high-priority processes, and so on. The set of rules used to determine when and how selecting a new process to run is called scheduling policy.

Linux scheduling is based on timing measurements: several processes are allowed to run "concurrently," which means that the CPU time is roughly divided into "slices," one for each runnable process. Of course, a single processor can run only one process at any given instant. If a currently running process is not terminated when its time slice or quantum expires, a process switch may take place. Time-sharing relies on timer interrupts and is thus transparent to processes. No additional code needs to be inserted in the programs in order to ensure CPU time-sharing.

The scheduling policy is also based on ranking processes according to their priority. Complicated algorithms are sometimes used to derive the current priority of a process, but the end result is the same: each process is associated with a value that denotes how appropriate it is to be assigned to the CPU.

In Linux, process priority is dynamic. The scheduler keeps track of what processes are doing and adjusts their priorities periodically; in this way, processes that have been denied the use of the CPU for a long time interval are boosted by dynamically increasing their priority. Correspondingly, processes running for a long time are penalized by decreasing their priority.

When speaking about scheduling, processes are traditionally classified as "I/O-bound" or "CPU-bound." The former make heavy use of I/O devices and spend much time waiting for I/O operations to complete; the latter are number-crunching applications that require a lot of CPU time. An alternative classification distinguishes three classes of processes:

Interactive processes
These interact constantly with their users, and therefore spend a lot of time waiting for keypresses and mouse operations. When input is received, the process must be woken up quickly, or the user will find the system to be unresponsive. Typically, the average delay must fall between 50 and 150 ms. The variance of such delay must also be bounded, or the user will find the system to be erratic. Typical interactive programs are command shells, text editors, and graphical applications.

Batch processes
These do not need user interaction, and hence they often run in the background. Since such processes do not need to be very responsive, they are often penalized by the scheduler. Typical batch programs are programming language compilers, database search engines, and scientific computations.

Real-time processes
These have very strong scheduling requirements. Such processes should never be blocked by lower-priority processes, they should have a short response time and, most important, such response time should have a minimum variance. Typical real-time programs are video and sound applications, robot controllers, and programs that collect data from physical sensors.

The two classifications we just offered are somewhat independent. For instance, a batch process can be either I/O-bound (e.g., a database server) or CPU-bound (e.g., an image-rendering program). While in Linux real-time programs are explicitly recognized as such by the scheduling algorithm, there is no way to distinguish between interactive and batch programs. In order to offer a good response time to interactive applications, Linux (like all Unix kernels) implicitly favors I/O-bound processes over CPU-bound ones.

Programmers may change the scheduling parameters by means of the system calls illustrated in Table 1. More details will be given in Part Three.

Table 1: System Calls Related to Scheduling
System Call Description
nice( ) Change the priority of a conventional process.
getpriority( ) Get the maximum priority of a group of conventional processes.
setpriority( ) Set the priority of a group of conventional processes.
sched_getscheduler( ) Get the scheduling policy of a process.
sched_setscheduler( ) Set the scheduling policy and priority of a process.
sched_getparam( ) Get the scheduling priority of a process.
sched_setparam( ) Set the priority of a process.
sched_yield( ) Relinquish the processor voluntarily without blocking.
sched_get_ priority_min( ) Get the minimum priority value for a policy.
sched_get_ priority_max( ) Get the maximum priority value for a policy.
sched_rr_get_interval( ) Get the time quantum value for the Round Robin policy.

Most system calls shown in the table apply to real-time processes, thus allowing users to develop real-time applications. However, Linux does not support the most demanding real-time applications because its kernel is nonpreemptive.

Process Preemption
Linux processes are preemptive. If a process enters the TASK_RUNNING state, the kernel checks whether its dynamic priority is greater than the priority of the currently running process. If it is, the execution of current is interrupted and the scheduler is invoked to select another process to run (usually the process that just became runnable). Of course, a process may also be preempted when its time quantum expires. When this occurs, the need_resched field of the current process is set, so the scheduler is invoked when the timer interrupt handler terminates.

For instance, let us consider a scenario in which only two programs--a text editor and a compiler--are being executed. The text editor is an interactive program, therefore it has a higher dynamic priority than the compiler. Nevertheless, it is often suspended, since the user alternates between pauses for think time and data entry; moreover, the average delay between two keypresses is relatively long. However, as soon as the user presses a key, an interrupt is raised, and the kernel wakes up the text editor process. The kernel also determines that the dynamic priority of the editor is higher than the priority of current, the currently running process (that is, the compiler), and hence it sets the need_resched field of this process, thus forcing the scheduler to be activated when the kernel finishes handling the interrupt. The scheduler selects the editor and performs a task switch; as a result, the execution of the editor is resumed very quickly and the character typed by the user is echoed to the screen. When the character has been processed, the text editor process suspends itself waiting for another keypress, and the compiler process can resume its execution. Be aware that a preempted process is not suspended, since it remains in the TASK_RUNNING state; it simply no longer uses the CPU.

Some real-time operating systems feature preemptive kernels, which means that a process running in Kernel Mode can be interrupted after any instruction, just as it can in User Mode. The Linux kernel is not preemptive, which means that a process can be preempted only while running in User Mode; nonpreemptive kernel design is much simpler, since most synchronization problems involving the kernel data structures are easily avoided.

How Long Must a Quantum Last?
The quantum duration is critical for system performances: it should be neither too long nor too short.

If the quantum duration is too short, the system overhead caused by task switches becomes excessively high. For instance, suppose that a task switch requires 10 milliseconds; if the quantum is also set to 10 milliseconds, then at least 50% of the CPU cycles will be dedicated to task switch.

If the quantum duration is too long, processes no longer appear to be executed concurrently. For instance, let's suppose that the quantum is set to five seconds; each runnable process makes progress for about five seconds, but then it stops for a very long time (typically, five seconds times the number of runnable processes).

It is often believed that a long quantum duration degrades the response time of interactive applications. This is usually false. Interactive processes have a relatively high priority, therefore they quickly preempt the batch processes, no matter how long the quantum duration is.

In some cases, a quantum duration that is too long degrades the responsiveness of the system. For instance, suppose that two users concurrently enter two commands at the respective shell prompts; one command is CPU-bound, while the other is an interactive application. Both shells fork a new process and delegate the execution of the user's command to it; moreover, suppose that such new processes have the same priority initially (Linux does not know in advance if an executed program is batch or interactive). Now, if the scheduler selects the CPU-bound process to run, the other process could wait for a whole time quantum before starting its execution. Therefore, if such duration is long, the system could appear to be unresponsive to the user that launched it.

The choice of quantum duration is always a compromise. The rule of thumb adopted by Linux is: choose a duration as long as possible, while keeping good system response time.

More Stories By Daniel Bovet

Daniel P. Bovet got a Ph.D. in computer science at UCLA in 1968 and is now full Professor at the University of Rome, "Tor Vergata," Italy.

More Stories By Marco Cesati

Marco Cesati got a degree in mathematics in 1992 and a Ph.D. in computer science (University of Rome, "La Sapienza") in 1995. He is now a research assistant in the computer science department of the School of Engineering (University of Rome, "Tor Vergata").

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
SYS-CON Events announced today that EastBanc Technologies will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. EastBanc Technologies has been working at the frontier of technology since 1999. Today, the firm provides full-lifecycle software development delivering flexible technology solutions that seamlessly integrate with existing systems – whether on premise or cloud. EastBanc Technologies partners with p...
SYS-CON Events announced today that ContentMX, the marketing technology and services company with a singular mission to increase engagement and drive more conversations for enterprise, channel and SMB technology marketers, has been named “Sponsor & Exhibitor Lounge Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York City, New York. “CloudExpo is a great opportunity to start a conversation with new prospects, but what happens after the...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, will discuss the importance of WebRTC and how it enables companies to fo...
The IoT is changing the way enterprises conduct business. In his session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, discuss how businesses can gain an edge over competitors by empowering consumers to take control through IoT. We'll cite examples such as a Washington, D.C.-based sports club that leveraged IoT and the cloud to develop a comprehensive booking system. He'll also highlight how IoT can revitalize and restore outdated business models, making them profitable...
SYS-CON Events announced today that MangoApps will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device. For more information, please visit https://www.mangoapps.com/.
SYS-CON Events announced today the How to Create Angular 2 Clients for the Cloud Workshop, being held June 7, 2016, in conjunction with 18th Cloud Expo | @ThingsExpo, at the Javits Center in New York, NY. Angular 2 is a complete re-write of the popular framework AngularJS. Programming in Angular 2 is greatly simplified. Now it’s a component-based well-performing framework. The immersive one-day workshop led by Yakov Fain, a Java Champion and a co-founder of the IT consultancy Farata Systems and...
What a difference a year makes. Organizations aren’t just talking about IoT possibilities, it is now baked into their core business strategy. With IoT, billions of devices generating data from different companies on different networks around the globe need to interact. From efficiency to better customer insights to completely new business models, IoT will turn traditional business models upside down. In the new customer-centric age, the key to success is delivering critical services and apps wit...
Join us at Cloud Expo | @ThingsExpo 2016 – June 7-9 at the Javits Center in New York City and November 1-3 at the Santa Clara Convention Center in Santa Clara, CA – and deliver your unique message in a way that is striking and unforgettable by taking advantage of SYS-CON's unmatched high-impact, result-driven event / media packages.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, will provide an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life ...
SYS-CON Events announced today that BMC Software has been named "Siver Sponsor" of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. BMC is a global leader in innovative software solutions that help businesses transform into digital enterprises for the ultimate competitive advantage. BMC Digital Enterprise Management is a set of innovative IT solutions designed to make digital business fast, seamless, and optimized from mainframe to mo...
SYS-CON Events announced today that MobiDev will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. MobiDev is a software company that develops and delivers turn-key mobile apps, websites, web services, and complex software systems for startups and enterprises. Since 2009 it has grown from a small group of passionate engineers and business managers to a full-scale mobile software company with over 200 develope...
As cloud and storage projections continue to rise, the number of organizations moving to the cloud is escalating and it is clear cloud storage is here to stay. However, is it secure? Data is the lifeblood for government entities, countries, cloud service providers and enterprises alike and losing or exposing that data can have disastrous results. There are new concepts for data storage on the horizon that will deliver secure solutions for storing and moving sensitive data around the world. ...
SoftLayer operates a global cloud infrastructure platform built for Internet scale. With a global footprint of data centers and network points of presence, SoftLayer provides infrastructure as a service to leading-edge customers ranging from Web startups to global enterprises. SoftLayer's modular architecture, full-featured API, and sophisticated automation provide unparalleled performance and control. Its flexible unified platform seamlessly spans physical and virtual devices linked via a world...
Companies can harness IoT and predictive analytics to sustain business continuity; predict and manage site performance during emergencies; minimize expensive reactive maintenance; and forecast equipment and maintenance budgets and expenditures. Providing cost-effective, uninterrupted service is challenging, particularly for organizations with geographically dispersed operations.
SYS-CON Events announced today TechTarget has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. TechTarget is the Web’s leading destination for serious technology buyers researching and making enterprise technology decisions. Its extensive global networ...
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
The essence of data analysis involves setting up data pipelines that consist of several operations that are chained together – starting from data collection, data quality checks, data integration, data analysis and data visualization (including the setting up of interaction paths in that visualization). In our opinion, the challenges stem from the technology diversity at each stage of the data pipeline as well as the lack of process around the analysis.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
Designing IoT applications is complex, but deploying them in a scalable fashion is even more complex. A scalable, API first IaaS cloud is a good start, but in order to understand the various components specific to deploying IoT applications, one needs to understand the architecture of these applications and figure out how to scale these components independently. In his session at @ThingsExpo, Nara Rajagopalan is CEO of Accelerite, will discuss the fundamental architecture of IoT applications, ...