Welcome!

Linux Authors: Carmen Gonzalez, Pat Romanski, Victoria Livschitz, Elizabeth White, Ignacio M. Llorente

Related Topics: SOA & WOA, Java, .NET, Linux, SDN Journal

SOA & WOA: Blog Feed Post

Software Engineering and Code Quality Goals You Should Nail Before 2018

Responsible IT managers need to change the way they think about software development

When applications crash due to a code quality issues, the common question is, "How could those experts have missed that?" The problem is, most people imagine software development as a room full of developers, keyboards clacking away with green, Matrix-esque code filling up the screen as they try and perfect the newest ground-breaking feature. However, in reality most of the work developers actually do is maintenance work fixing the bugs found in the production code to ensure a higher level of code quality.

Not only does this severely reduce the amount of business value IT can bring to the table, it also exponentially increases the cost in developing and maintaining quality applications. And even though the IT industry has seen this rise in cost happening for years, they've done little to stem the rising tide. The time has come to draw a line in the sand.

Capers Jones, VP and CTO of Namcook Analytics, recently released a collection of 20 goals software engineers should be aiming to reach by 2018 and we thought this was a great starting point to get software engineering focused on fixing the problems that lie before them, and not just spinning their gears.

However, having ambitious goals is only part of the challenge. In our experience, the organizations aren't equipped to meet these goals because:

  • Functional testing isn't enough
  • Code analyzers are myopic
  • Productivity measurement is manual and laborious

Responsible IT managers need to change the way they think about software development and arm their teams with better tools and processes if they want to come close to achieving any of these goals. This starts with gaining better visibility into their software risk, performance measurement, portfolio analysis, and quality improvement - and it needs to be instantaneous, not quarterly. The problems are happening now, in development, and management is wasting precious time and money waiting until testing to try and put it all together to work out all the kinks.

Once management has a transparent view into the code quality of their application portfolio, then they can shift their focus to achieving the software engineering goals outlined by Jones. They're great goals to aspire to, but let's make sure we're not putting the cart before the horse.

  1. Raise defect removal efficiency (DRE) from < 90.0% to > 99.5%. This is the most important goal for the industry. It cannot be achieved by testing alone but requires pre-test inspections and static analysis. DRE is measured by comparing all bugs found during development to those reported in the first 90 days by customers.
  2. Lower software defect potentials from > 4.0 per function point to < 2.0 per function point. Defect potentials are the sum of bugs found in requirements, design, code, user documents, and bad fixes. Requirements and design bugs often outnumber code bugs. Achieving this goal requires effective defect prevention such as joint application design (JAD), quality function deployment (QFD), certified reusable components, and others. It also requires a complete software quality measurement program. Achieving this goal also requires better training in common sources of defects found in requirements, design, and source code.
  3. Lower cost of quality (COQ) from > 45.0% of development to < 20.0% of development. Finding and fixing bugs has been the most expensive task in software for more than 50 years. A synergistic combination of defect prevention and pre-test inspections and static analysis are needed to achieve this goal.
  4. Reduce average cyclomatic complexity from > 25.0 to < 10.0. Achieving this goal requires careful analysis of software structures, and of course it also requires measuring cyclomatic complexity for all modules.
  5. Raise test coverage from < 75.0% to > 98.5% for risks, paths, and requirements. Achieving this goal requires using mathematical design methods for test case creation such as using design of experiments. It also requires measurement of test coverage.
  6. Eliminate error-prone modules in large systems. Bugs are not randomly distributed. Achieving this goal requires careful measurements of code defects during development and after release with tools that can trace bugs to specific modules. Some companies such as IBM have been doing this for many years. Error-prone modules (EPM) are usually less than 5% of total modules but receive more than 50% of total bugs. Prevention is the best solution. Existing error-prone modules in legacy applications may require surgical removal and replacement.
  7. Eliminate security flaws in all software applications. As cyber-crime becomes more common the need for better security is more urgent. Achieving this goal requires use of security inspections, security testing, and automated tools that seek out security flaws. For major systems containing valuable financial or confidential data, ethical hackers may also be needed.
  8. Reduce the odds of cyber-attacks from > 10.0% to < 0.1%. Achieving this goal requires a synergistic combination of better firewalls, continuous anti-virus checking with constant updates to viral signatures; and also increasing the immunity of software itself by means of changes to basic architecture and permission strategies.
  9. Reduce bad-fix injections from > 7.0% to < 1.0%. Not many people know that about 7% of attempts to fix software bugs contain new bugs in the fixes themselves commonly called "bad fixes."  When cyclomatic complexity tops 50 the bad-fix injection rate can soar to 25% or more. Reducing bad-fix injection requires measuring and controlling cyclomatic complexity, using static analysis for all bug fixes, testing all bug fixes, and inspections of all significant fixes prior to integration.
  10. Reduce requirements creep from > 1.5% per calendar month to < 0.25% per calendar month. Requirements creep has been an endemic problem of the software industry for more than 50 years. While prototypes, agile embedded users, and joint application design (JAD) are useful, it is technically possible to also use automated requirements models to improve requirements completeness.
  11. Lower the risk of project failure or cancellation on large 10,000 function point projects from > 35.0% to < 5.0%. Cancellation of large systems due to poor quality and cost overruns is an endemic problem of the software industry, and totally unnecessary. A synergistic combination of effective defect prevention and pre-test inspections and static analysis can come close to eliminating this far too common problem.
  12. Reduce the odds of schedule delays from > 50.0% to < 5.0%. Since the main reasons for schedule delays are poor quality and excessive requirements creep, solving some of the earlier problems in this list will also solve the problem of schedule delays. Most projects seem on time until testing starts, when huge quantities of bugs begin to stretch out the test schedule to infinity. Defect prevention combined with pre-test static analysis can reduce or eliminate schedule delays.
  13. Reduce the odds of cost overruns from > 40.0% to < 3.0%. Software cost overruns and software schedule delays have similar root causes; i.e. poor quality control combined with excessive requirements creep. Better defect prevention combined with pre-test defect removal can help to cure both of these endemic software problems.
  14. Reduce the odds of litigation on outsource contracts from > 5.0% to < 1.0%. The author of this paper has been an expert witness in 12 breach of contract cases. All of these cases seem to have similar root causes which include poor quality control, poor change control, and very poor status tracking. A synergistic combination of early sizing and risk analysis prior to contract signing plus effective defect prevention and pre-test defect removal can lower the odds of software breach of contract litigation.
  15. Lower maintenance and warranty repair costs by > 75.0% compared to 2014 values. Starting in about 2000 the number of U.S. maintenance programmers began to exceed the number of development programmers. IBM discovered that effective defect prevention and pre-test defect removal reduced delivered defects to such low levels that maintenance costs were reduced by at least 45% and sometimes as much as 75%.
  16. Improve the volume of certified reusable materials from < 15.0% to > 75.0%. Custom designs and manual coding are intrinsically error-prone and inefficient no matter what methodology is used. The best way of converting software engineering from a craft to a modern profession would be to construct applications from libraries of certified reusable material; i.e. reusable requirements, design, code, and test materials. Certification to near zero-defect levels is a precursor, so effective quality control is on the critical path to increasing the volumes of certified reusable materials.
  17. Improve average development productivity from < 8.0 function points per month to >16.0 function points per month. Productivity rates vary based on application size, complexity, team experience, methodologies, and several other factors. However when all projects are viewed in aggregate average productivity is below 8.0 function points per staff month. Doubling this rate needs a combination of better quality control and much higher volumes of certified reusable materials; probably 50% or more.
  18. Improve work hours per function point from > 16.5 to < 8.25. Goal 17 and this goal are essentially the same but use different metrics.  However there is one important difference. Work hours will be the same in every country. For example a project in Sweden with 126 work hours per month will have the same number of work hours as a project in China with 184 work hours per month. But the Chinese project will need fewer calendar months than the Swedish project.
  19. Shorten average software development schedules by > 35.0% compared to 2014 averages. The most common complaint of software clients and corporate executives at the CIO and CFO level is that big software projects take too long. Surprisingly it is not hard to make them shorter. A synergistic combination of better defect prevention, pre-test static analysis and inspections, and larger volumes of certified reusable materials can make significant reductions in schedule intervals.
  20. Raise maintenance assignment scopes from < 1,500 function points to > 5,000 function points. The metric "maintenance assignment scope" refers to the number of function points that one maintenance programmer can keep up and running during a calendar year. The range is from < 300 function points for buggy and complex software to > 5,000 function points for modern software released with effective quality control. The current average is about 1,500 function points. This is a key metric for predicting maintenance staffing for both individual projects and also for corporate portfolios. Achieving this goal requires effective defect prevention, effective pre-test defect removal, and effective testing using modern mathematically based test case design methods. It also requires low levels of cyclomatic complexity.

Read the original blog entry...

More Stories By Lev Lesokhin

Lev Lesokhin is responsible for CAST's market development, strategy, thought leadership and product marketing worldwide. He has a passion for making customers successful, building the ecosystem, and advancing the state of the art in business technology. Lev comes to CAST from SAP, where he was Director, Global SME Marketing. Prior to SAP, Lev was at the Corporate Executive Board as one of the leaders of the Applications Executive Council, where he worked with the heads of applications organizations at Fortune 1000 companies to identify best management practices.

@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.