Click here to close now.


Linux Containers Authors: Carmen Gonzalez, Liz McMillan, Elizabeth White, AppDynamics Blog, Pat Romanski

Related Topics: Microservices Expo, Java IoT, Linux Containers, Open Source Cloud, @CloudExpo, SDN Journal

Microservices Expo: Article

Beyond REST and SOA: Introducing Agent-Oriented Architecture

Dynamic coupling represents a paradigm shift in how to build and utilize APIs

A question we commonly get at EnterpriseWeb is whether our platform follows REST or not. Representational State Transfer (REST) is an architectural style for distributed hypermedia systems such as the World Wide Web, and is perhaps best known for providing a lightweight, uniform Web-style application programming interface (API) to server-based resources. One the one hand, EnterpriseWeb can both consume and expose any type of interface, including tightly coupled APIs, Web Services, as well as RESTful APIs, and the platform has no requirement that customers must build distributed hypermedia systems. It would be easy to conclude, therefore, that while EnterpriseWeb supports REST, it is not truly RESTful.

Such a conclusion, however, would neglect the broader architectural context for EnterpriseWeb. The platform builds on top of and extends REST as the foundation for the dynamic, enterprise-class architectural style we call Agent-Oriented Architecture (AOA). EnterpriseWeb's intelligent agent, SmartAlex, leverages RESTful constraints as part of the core functionality of the EnterpriseWeb platform. The resulting AOA pattern essentially reinvents application functionality and enterprise integration, heralding a new paradigm for distributed computing.

The Limitations of REST
One of the primary challenges to the successful application of REST is understanding how to extend REST to distributed hypermedia systems in general, beyond the straightforward interactions between browsers and Web servers. To help clarify this point, Figure 1 below illustrates a simple RESTful architecture. In this example, the client is a browser, and it sends GETs and PUTs or other RESTful queries to URIs that resolve to resources on a server, which responds by sending the appropriate representation back to the client. In addition, REST allows for a cache intermediating between client and server that might resolve queries on behalf of the server for scalability purposes.

Figure 1: Simple RESTful Architecture

As an architectural style, however, the point of REST isn't the uniform interface that the HTTP verbs enable. REST is really about hypermedia, where hypermedia are the engine of application state - the HATEOAS constraint essential to building hypermedia systems. In figure 1, we're representing HATEOAS by the interactions between human users and their browsers as people click links on Web pages, thus advancing the application state. The RESTful client (in other words, the browser) maintains application state for each user by showing them the Web page (or other representation) they requested when they followed a given hyperlink.

However, software clients that do not necessarily have user interfaces may be problematic for REST, but they are a familiar part of the Service-Oriented Architecture (SOA) architectural style, where we call such clients Service consumers. Combining REST and SOA into the combined architectural style we call REST-Based SOA introduces the notion of an intermediary that presents a Service endpoint and resolves interactions with that endpoint into underlying interactions with various legacy systems. The SOA intermediary in this case exposes RESTful endpoints as URIs that accept GETs, PUTs, etc. from Service consumers, which can be any software client. See figure 2 below for an illustration of the REST-Based SOA pattern.

Figure 2: REST-Based SOA

Note that adding SOA to REST augments the role of the intermediary. Pure REST allows for simple caching and proxy behavior, while SOA calls for policy-based routing and transformation operations that provide the Service abstraction. SOA also reinforces the notion that the Service consumer can be any piece of software, regardless of whether it has a user interface.

Even with REST-based SOA, however, we still have problems with implementing HATEOAS: coding our clients so that they are able to gather the metadata they need by following hyperlinks. In other words, how do we apply REST to any hypermedia system, where instead of a browser we have any piece of software as a client? How do we code the software client to know how to follow hyperlinks, where it doesn't know what the hyperlinks are ahead of time or what representations they're supposed to interact with? Humans simply click hyperlinks until they get the representation they want, even if they don't know beforehand how to find it. How do we teach software to automate this process and gather all the metadata it needs by following a sequence of hyperlinks?

Introducing Agent-Oriented Architecture
The answer to these questions is to cast an intelligent agent in the role of SOA intermediary in the REST-Based SOA pattern in Figure 2. Intelligent software agents (or simply intelligent agents when we know we're talking about software) are autonomous programs that have the authority to determine what action is appropriate based upon the requests made of them. In this new, Agent-Oriented architectural pattern, the agent interacts with any resource as a RESTful client, where the agent must be able to automatically follow hyperlinks to gather all the information it requires in order to respond appropriately to any request from the client.

In other words, when following this newly coined AOA architectural style, software clients do not have to comply with HATEOAS (they may, but such compliance is optional). Instead, the agent alone must follow the HATEOAS constraint as it interacts with resources. To achieve this behavior, we must underspecify the intelligent agent. In other words, the agent can't know ahead of time what it's supposed to do to respond to any particular request. Instead, it must be able to process any request on demand by fetching related resources that provide the appropriate metadata, data, or code it needs to properly respond to that request with a custom response, for each interaction in real time. Figure 3 below illustrates the basic AOA pattern.

Figure 3: Agent-Oriented Architecture

For each request from any client, regardless of whether it has a user interface, the agent constructs a custom response based on latest and most relevant information available. In fact, requests to the agent can come from anywhere (i.e., they follow an event-driven pattern). The agent's underspecification means that it doesn't know ahead of time what behavior it must exhibit, but it does know how to find the information it needs in order to determine that behavior - and it does that by following hyperlinks, as per HATEOAS. In other words, the goal-oriented agent resolves URIs recursively in order to gather and execute the information it needs - a particularly concise example of fully automated HATEOAS in action.

The Benefits of AOA

An earlier Loosely-Coupled newsletter explained that if you follow REST, you're unable to accept out-of-band metadata or business context outside of the hypermedia. Agent-Oriented Architecture, however, solves these problems, because the agent is free to fetch whatever it needs to complete the request, since it treats all entities - metadata, data, code, etc. - as resources. In other words, the agent serves as a RESTful client, even when the software client does not. What was out-of-band for REST isn't out-of-band for AOA. Everything is on the table.

The true power of AOA, though, lies in how it resolves the fundamental challenge of static APIs. Whether they be Web Services, RESTful APIs, or some other type of loosely-coupled interface, every approach to software integration today suffers from the fact that interactions tend to break when API contract metadata change.

By adding an intelligent agent to the mix, we're able to resolve differences in interaction context between disparate software endpoints dynamically and in real time. Far more than a traditional broker, which must rely on static transformation logic to resolve endpoint differences, the agent must be able to interpret metadata, as well as policies, rules, and the underlying data themselves to create real time interactions that maintain the business context - an example of dynamic coupling, a central principle to AOA.

Dynamic coupling, therefore, represents a paradigm shift in how to build and utilize APIs. Up to this point in time, the focus of both SOA and REST has been on building loosely-coupled interfaces: static, contracted interfaces specified by WSDL and various policy metadata when those interfaces are Web Services, or Internet Media Types and related metadata for RESTful interactions. Neither approach deals well with change. AOA, in contrast, relies upon dynamic coupling that responds automatically to change, since the agent interprets current metadata for every interaction in real time.

Icons by

More Stories By Jason Bloomberg

Jason Bloomberg is the leading expert on architecting agility for the enterprise. As president of Intellyx, Mr. Bloomberg brings his years of thought leadership in the areas of Cloud Computing, Enterprise Architecture, and Service-Oriented Architecture to a global clientele of business executives, architects, software vendors, and Cloud service providers looking to achieve technology-enabled business agility across their organizations and for their customers. His latest book, The Agile Architecture Revolution (John Wiley & Sons, 2013), sets the stage for Mr. Bloomberg’s groundbreaking Agile Architecture vision.

Mr. Bloomberg is perhaps best known for his twelve years at ZapThink, where he created and delivered the Licensed ZapThink Architect (LZA) SOA course and associated credential, certifying over 1,700 professionals worldwide. He is one of the original Managing Partners of ZapThink LLC, the leading SOA advisory and analysis firm, which was acquired by Dovel Technologies in 2011. He now runs the successor to the LZA program, the Bloomberg Agile Architecture Course, around the world.

Mr. Bloomberg is a frequent conference speaker and prolific writer. He has published over 500 articles, spoken at over 300 conferences, Webinars, and other events, and has been quoted in the press over 1,400 times as the leading expert on agile approaches to architecture in the enterprise.

Mr. Bloomberg’s previous book, Service Orient or Be Doomed! How Service Orientation Will Change Your Business (John Wiley & Sons, 2006, coauthored with Ron Schmelzer), is recognized as the leading business book on Service Orientation. He also co-authored the books XML and Web Services Unleashed (SAMS Publishing, 2002), and Web Page Scripting Techniques (Hayden Books, 1996).

Prior to ZapThink, Mr. Bloomberg built a diverse background in eBusiness technology management and industry analysis, including serving as a senior analyst in IDC’s eBusiness Advisory group, as well as holding eBusiness management positions at USWeb/CKS (later marchFIRST) and WaveBend Solutions (now Hitachi Consulting).

@ThingsExpo Stories
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
Who are you? How do you introduce yourself? Do you use a name, or do you greet a friend by the last four digits of his social security number? Assuming you don’t, why are we content to associate our identity with 10 random digits assigned by our phone company? Identity is an issue that affects everyone, but as individuals we don’t spend a lot of time thinking about it. In his session at @ThingsExpo, Ben Klang, Founder & President of Mojo Lingo, will discuss the impact of technology on identity. Should we federate, or not? How should identity be secured? Who owns the identity? How is identity ...
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.