Click here to close now.

Welcome!

Linux Authors: Liz McMillan, Roger Strukhoff, Carmen Gonzalez, Tim Hinds, Sean Dwyer

Related Topics: Big Data Journal, Java, Linux, Web 2.0, Cloud Expo, Security

Big Data Journal: Blog Post

In-Memory Database vs. In-Memory Data Grid By @GridGain | @CloudExpo [#BigData]

It's easy to start with technical differences between the two categories

A few months ago, I spoke at the conference where I explained the difference between caching and an in-memory data grid. Today, having realized that many people are also looking to better understand the difference between two major categories in in-memory computing: In-Memory Database and In-Memory Data Grid, I am sharing the succinct version of my thinking on this topic - thanks to a recent analyst call that helped to put everything in place :)

TL;DR

Skip to conclusion to get the bottom line.

Nomenclature
Let's clarify the naming and buzzwords first. In-Memory Database (IMDB) is a well-established category name and it is typically used unambiguously.

It is important to note that there is a new crop of traditional databases with serious In-Memory "options". That includes MS SQL 2014, Oracle's Exalytics and Exadata, and IBM DB2 with BLU offerings. The line is blurry between these and the new pure In-Memory Databases, and for the simplicity I'll continue to call them In-Memory Databases.

In-Memory Data Grids (IMDGs) are sometimes (but not very frequently) called In-Memory NoSQL/NewSQL Databases. Although the latter can be more accurate in some case - I am going to use the In-Memory Data Grid term in this article, as it tends to be the more widely used term.

Note that there are also In-Memory Compute Grids and In-Memory Computing Platforms that include or augment many of the features of In-Memory Data Grids and In-Memory Databases.

Confusing, eh? It is... and for consistency - going forward we'll just use these terms for the two main categories:

  • In-Memory Database
  • In-Memory Data Grid

Tiered Storage
It is also important to nail down what we mean by "In-Memory". Surprisingly - there's a lot of confusion here as well as some vendors refer to SSDs, Flash-on-PCI, Memory Channel Storage, and, of course, DRAM as "In-Memory".

In reality, most vendors support a Tiered Storage Model where some portion of the data is stored in DRAM (the fastest storage but with limited capacity) and then it gets overflown to a verity of flash or disk devices (slower but with more capacity) - so it is rarely a DRAM-only or Flash-only product. However, it's important to note that most products in both categories are often biased towards mostly DRAM or mostly flash/disk storage in their architecture.

Bottom line is that products vary greatly in what they mean by "In-Memory" but in the end they all have a significant "In-Memory" component.

Technical Differences
It's easy to start with technical differences between the two categories.

Most In-Memory Databases are your father's RDBMS that store data "in memory" instead of disk. That's practically all there's to it. They provide good SQL support with only a modest list of unsupported SQL features, shipped with ODBC/JDBC drivers and can be used in place of existing RDBMS often without significant changes.

In-Memory Data Grids typically lack full ANSI SQL support but instead provide MPP-based (Massively Parallel Processing) capabilities where data is spread across large cluster of commodity servers and processed in explicitly parallel fashion. The main access pattern is key/value access, MapReduce, various forms of HPC-like processing, and a limited distributed SQL querying and indexing capabilities.

It is important to note that there is a significant crossover from In-Memory Data Grids to In-Memory Databases in terms of SQL support. GridGain, for example, provides pretty serious and constantly growing support for SQL including pluggable indexing, distributed joins optimization, custom SQL functions, etc.

Speed Only vs. Speed + Scalability
One of the crucial differences between In-Memory Data Grids and In-Memory Databases lies in the ability to scale to hundreds and thousands of servers. That is the In-Memory Data Grid's inherent capability for such scale due to their MPP architecture, and the In-Memory Database's explicit inability to scale due to fact that SQL joins, in general, cannot be efficiently performed in a distribution context.

It's one of the dirty secrets of In-Memory Databases: one of their most useful features, SQL joins, is also is their Achilles heel when it comes to scalability. This is the fundamental reason why most existing SQL databases (disk or memory based) are based on vertically scalable SMP (Symmetrical Processing) architecture unlike In-Memory Data Grids that utilize the much more horizontally scalable MPP approach.

It's important to note that both In-Memory Data Grids and In-Memory Database can achieve similar speed in a local non-distributed context. In the end - they both do all processing in memory.

But only In-Memory Data Grids can natively scale to hundreds and thousands of nodes providing unprecedented scalability and unrivaled throughput.

Replace Database vs. Change Application
Apart from scalability, there is another difference that is important for uses cases where In-Memory Data Grids or In-Memory Database are tasked with speeding up existing systems or applications.

An In-Memory Data Grid always works with an existing database providing a layer of massively distributed in-memory storage and processing between the database and the application. Applications then rely on this layer for super-fast data access and processing. Most In-Memory Data Grids can seamlessly read-through and write-through from and to databases, when necessary, and generally are highly integrated with existing databases.

In exchange - developers need to make some changes to the application to take advantage of these new capabilities. The application no longer "talks" SQL only, but needs to learn how to use MPP, MapReduce or other techniques of data processing.

In-Memory Databases provide almost a mirror opposite picture: they often requirereplacing your existing database (unless you use one of those In-Memory "options" to temporary boost your database performance) - but will demand significantly less changes to the application itself as it will continue to rely on SQL (albeit a modified dialect of it).

In the end, both approaches have their advantages and disadvantages, and they may often depend in part on organizational policies and politics as much as on their technical merits.

Conclusion
The bottom line should be pretty clear by now.

If you are developing a green-field, brand new system or application the choice is pretty clear in favor of In-Memory Data Grids. You get the best of the two worlds: you get to work with the existing databases in your organization where necessary, and enjoy tremendous performance and scalability benefits of In-Memory Data Grids - both of which are highly integrated.

If you are, however, modernizing your existing enterprise system or application the choice comes down to this:

You will want to use an In-Memory Database if the following applies to you:

  • You can replace or upgrade your existing disk-based RDBMS
  • You cannot make changes to your applications
  • You care about speed, but don't care as much about scalability

In other words - you boost your application's speed by replacing or upgrading RDBMS without significantly touching the application itself.

On the other hand, you want to use an In-Memory Data Grid if the following applies to you:

  • You cannot replace your existing disk-based RDBMS
  • You can make changes to (the data access subsystem of) your application
  • You care about speed and especially about scalability, and don't want to trade one for the other

In other words - with an In-Memory Data Grid you can boost your application's speed and provide massive scale by tweaking the application, but without making changes to your existing database.

It can be summarized it in the following table:


In-Memory Data GridIn-Memory Database
Existing Application Changed Unchanged
Existing RDBMS Unchanged Changed or Replaced
Speed Yes Yes
Max. Scalability Yes No

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@ThingsExpo Stories
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
SYS-CON Events announced today that GENBAND, a leading developer of real time communications software solutions, has been named “Silver Sponsor” of SYS-CON's WebRTC Summit, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. The GENBAND team will be on hand to demonstrate their newest product, Kandy. Kandy is a communications Platform-as-a-Service (PaaS) that enables companies to seamlessly integrate more human communications into their Web and mobile applications - creating more engaging experiences for their customers and boosting collaboration and productiv...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities. In his session at @ThingsExpo, Gary Hall, Chief Technology Officer, Federal Defense at Cisco Systems, will break down the core capabilities of IoT in multiple settings and expand upon IoE for bo...
The Internet of Things (IoT) is causing data centers to become radically decentralized and atomized within a new paradigm known as “fog computing.” To support IoT applications, such as connected cars and smart grids, data centers' core functions will be decentralized out to the network's edges and endpoints (aka “fogs”). As this trend takes hold, Big Data analytics platforms will focus on high-volume log analysis (aka “logs”) and rely heavily on cognitive-computing algorithms (aka “cogs”) to make sense of it all.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, shared some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, a...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - is now accepting submissions to demo smart cars on the Expo Floor. Smart car sponsorship benefits include general brand exposure and increasing engagement with the developer ecosystem.
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
SYS-CON Events announced today that SoftLayer, an IBM company, has been named “Gold Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place June 9-11, 2015 at the Javits Center in New York City, NY, and the 17th International Cloud Expo®, which will take place November 3–5, 2015 at the Santa Clara Convention Center in Santa Clara, CA. SoftLayer operates a global cloud infrastructure platform built for Internet scale. With a global footprint of data centers and network points of presence, SoftLayer provides infrastructure as a service to leading-edge customers ranging from ...
SYS-CON Events announced today that Open Data Centers (ODC), a carrier-neutral colocation provider, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. Open Data Centers is a carrier-neutral data center operator in New Jersey and New York City offering alternative connectivity options for carriers, service providers and enterprise customers.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. Learn about IoT, Big Data and deployments processing massive data volumes from wearables, utilities and other machines.
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...