Welcome!

Linux Authors: Sematext Blog, Carmen Gonzalez, Pat Romanski, Liz McMillan, Elizabeth White

Related Topics: SOA & WOA, Java, Linux, AJAX & REA, Web 2.0, Big Data Journal

SOA & WOA: Article

Understanding Application Performance on the Network | Part 1

A foundation for network triage

As a network professional, one of your newer roles is likely troubleshooting poor application performance. For most of us, our jobs have advanced beyond network "health," towards sharing - if not owning - responsibility for application delivery. There are many reasons for this more justifiable than the adage that the network is first to be blamed for performance problems. (Your application and system peers feel they are first to be blamed as well.) Two related influencing trends come to mind:

  1. Increased globalization, coupled with (in fact facilitated by) inexpensive bandwidth means that the network is becoming a more critical part of the business at the same time its constraint is shifting from bandwidth to latency.
  2. Many of the network devices - appliances - that sit in the path between remote offices and data centers are application-fluent, designed to enhance and speed application performance, often by spoofing application behaviors; in fact, many of these have evolved in response to problems introduced by increased network latency.

In an ideal world, your application performance management (APM) solution or your application-aware network performance management (AANPM) solution would automatically isolate the fault domain for you, providing all the diagnostic evidence you need to take the appropriate corrective actions. The reality is that this isn't always the case; intermittent problems, unexpected application or network behaviors, inefficient configuration settings, or just a desire for more concrete proof mean that manual troubleshooting remains a frequent exercise. Although it may seem like there are a near-unlimited number of root causes of poor application performance, and that trial and error, guesswork and finger-pointing are valid paths toward resolution, the truth is much different. In a series of network triage blog posts, I'll identify the very limited realm of possible performance constraints, explain how to measure and quantify their impact, illustrate these using network packet trace diagrams, and offer meaningful and supportable actions you might evaluate to correct the problem. Understanding how to detect these possible performance problems (there are twelve altogether) will help you troubleshoot faster, more accurately, with greater insight, while collaborating more effectively with your application and system peers.

In this introductory entry, I present the request/reply application paradigm assumption upon which most of the analyses depend, illustrate key packet-level measurements, and provide a list of the 12 bottleneck categories we'll discuss in future blog entries to the series.

Packet Flow Diagrams
Throughout the blog series I will be using packet flow diagrams to illustrate message flows on the network, often to emphasize TCP's influence on these flows. Some are drawings to illustrate concepts and theory, others are screenshots from Compuware's Transaction Trace Analysis that illustrate the pertinent performance bottleneck. The diagram conventions are simple:

  • Each arrow represents one TCP packet
  • Blue arrows are used to represent data packets
  • Red arrows are used to represent TCP ACK packets
  • The slope of the arrow represents network delay
  • Time flows from top to bottom

Terminology
We will frequently use the term "operation," which we define as the unit of work that an application performs on behalf of a user; we sometimes describe it as "Click (or Enter key) to screen update." Business transactions are made up of one or more operations; for example, a user may click through a series of screens (operations) to complete a customer order update. Operations are an important demarcation point, as they represent the unique performance dimension important to the business, to the user, and to IT. The time a user waits for the system to execute an operation impacts business transaction performance and therefore productivity, and is dictated by the performance of lower-level IT-managed hardware, software and services. Note that this terminology may differ somewhat from network probes that often use the term "transaction" to reference session-layer request-response exchanges, which we discuss next.

Request/Reply Paradigm
We assume a client/server or request/reply paradigm, with TCP as the transport; this covers virtually all of what we might refer to as interactive business applications. It would include, for example, web-based apps, "fat client" apps, file server access, file transfers, backups, etc. It specifically excludes voice and video streaming as well as the presentation tier of thin-client solutions that use protocols such as ICA and PCoIP.

For each operation, there will be at least one application-level request and one corresponding application-level reply. These can be considered application messages, sometimes referred to as application-layer protocol data units (PDUs). Consider a simple client-server operation. At the application layer, a request message is passed to the client's TCP stack (TCP socket) for segmentation (into packets), addressing, and transmission; these lower layer TCP stack functions are essentially transparent to the application. At the receiving end (the server), the data from the network packets is reassembled into the application layer message and delivered to the listener service for processing. Once processing is complete, the server application passes the reply message to the server's TCP stack, and the message contents are similarly segmented and transferred across the network to the client. The performance of these request/reply message exchanges is constrained by two factors; message processing (at the server or client) and message transmission (across the network).

It is helpful, then, to consider this request/reply message exchange as the basis for performance analysis; the reassembled messages represent our network-centric insight into the application, while the packets visible in the trace file inform us how efficiently the network transports these messages.

For further insight click here for the full article, and stay tuned for Part II.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analysis at Compuware APM. He has global field enablement responsibilities for performance monitoring and analysis solutions embracing emerging and strategic technologies, including WAN optimization, thin client infrastructures, network forensics, and a unique performance management maturity methodology. He is also a co-inventor of multiple analysis features, and continues to champion the value of software-enabled expert network analysis.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
The BPM world is going through some evolution or changes where traditional business process management solutions really have nowhere to go in terms of development of the road map. In this demo at 15th Cloud Expo, Kyle Hansen, Director of Professional Services at AgilePoint, shows AgilePoint’s unique approach to dealing with this market circumstance by developing a rapid application composition or development framework.

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, addressed the big issues involving these technologies and, more important, the results they will achieve. Rodney Rogers, chairman and CEO of Virtustream; Brendan O'Brien, co-founder of Aria Systems, Bart Copeland, president and CEO of ActiveState Software; Jim Cowie, chief scientist at Dyn; Dave Wagstaff, VP and chief architect at BSQUARE Corporation; Seth Proctor, CTO of NuoDB, Inc.; and Andris Gailitis, C...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.