Welcome!

Linux Containers Authors: Liz McMillan, Yeshim Deniz, Elizabeth White, Pat Romanski, Zakia Bouachraoui

Related Topics: Microservices Expo, Java IoT, Linux Containers, Containers Expo Blog, Machine Learning , @DXWorldExpo

Microservices Expo: Article

Understanding Application Performance on the Network | Part 2

Bandwidth and Congestion

When we think of application performance problems that are network-related, we often immediately think of bandwidth and congestion as likely culprits; faster speeds and less traffic will solve everything, right? This is reminiscent of recent ISP wars; which is better, DSL or cable modems? Cable modem proponents touted the higher bandwidth while DSL proponents warned of the dangers of sharing the network with your potentially bandwidth-hogging neighbors. In this blog entry, we'll examine these two closely-related constraints, beginning the series of performance analyses using the framework we introduced in Part I. I'll use graphics from Compuware's application-centric protocol analyzer - Transaction Trace - as illustrations.

Bandwidth
We define bandwidth delay as the serialization delay encountered as bits are clocked out onto the network medium. Most important for performance analysis is what we refer to as the "bottleneck bandwidth" - the speed of the link at its slowest point - as this will be the primary influencer on the packet arrival rate at the destination. Each packet incurs the serialization delay dictated by the link speed; for example, at 4Mbps, a 1500 byte packet takes approximately 3 milliseconds to be serialized. Extending this bandwidth calculation to an entire operation is relatively straightforward. We observe (on the wire) the number of bytes sent or received and multiply that by 8 bits, then divide by the bottleneck link speed, understanding that asymmetric links may have different upstream and downstream speeds.

Bandwidth effect = [ [# bytes sent or received] x [8 bits] ]/ [Bottleneck link speed]

For example, we can calculate the bandwidth effect for an operation that sends 100KB and receives 1024KB on a 2048Kbps link:

  • Upstream effect: [100,000 * 8] / 2,048,000] = 390 milliseconds
  • Downstream effect: [1,024,000 *8] / 2,048,000] = 4000 milliseconds

For better precision, you should account for frame header size differences between the packet capture medium - Ethernet, likely - and the WAN link; this difference might be as much as 8 or 10 bytes per packet.

Bandwidth constraints impact only the data transfer periods within an operation - the request and reply flows. Each flow also incurs (at a minimum) additional delay due to network latency, as the first bit traverses the network from sender to receiver; TCP flow control or other factors may introduce further delays. (As an operation's chattiness increases, its sensitivity to network latency increases and the overall impact of bandwidth tends to decrease, becoming overshadowed by latency.)

Transaction Trace Illustration: Bandwidth
One way to frame the question is "does the operation use all of the available bandwidth?" The simplest way to visualize this is to graph throughput in each direction, comparing uni-directional throughput with the link's measured bandwidth. If the answer is yes, then the operation bottleneck is bandwidth; if the answer is no, then there is some other constraint limiting performance. (This doesn't mean that bandwidth isn't a significant, or even the dominant, constraint; it simply means that there are other factors that prevent the operation from reaching the bandwidth limitation. The formula we used to calculate the impact of bandwidth still applies as a definition of the contribution of bandwidth to the overall operation time.)

This FTP transfer is frequently limited by the 10Mbps available bandwidth.

Networks are generally shared resources; when there are multiple connections on a link, TCP flow control will prevent a single flow from using all of the available bandwidth as it detects and adjusts for congestion. We will evaluate the impact of congestion next, but fundamentally, the diagnosis is the same; bandwidth constrains throughput.

Congestion
Congestion occurs when data arrives at a network interface at a rate faster than the media can service; when this occurs, packets must be placed in an output queue, waiting until earlier packets have been serviced. These queue delays add to the end-to-end network delay, with a potentially significant effect on both chatty and non-chatty operations. (Chatty operations will be impacted due to the increase in round-trip delay, while non-chatty operations may be impacted by TCP flow control and congestion avoidance algorithms.)

For a given flow, congestion initially reduces the rate of TCP slow-start's ramp by slowing increases to the sender's Congestion Window (CWD); it also adds to the delay component of the Bandwidth Delay Product (BDP), increasing the likelihood of exhausting the receiver's TCP window. (We'll discuss TCP slow-start as well as the BDP later in this series.)

As congestion becomes more severe, the queue in one of the path's routers may become full. As packets arrive exceeding the queue's storage capacity, some packets must be discarded. Routers employ various algorithms to determine which packets should be dropped, perhaps attempting to distribute congestion's impact among multiple connections, or to more significantly impact lower-priority traffic. When TCP detects these dropped packets (by a triple-duplicate ACK, for example), congestion is the assumed cause. As we will discuss in more depth in an upcoming blog entry, packet loss causes the sending TCP to reduce its Congestion Window by 50%, after which slow-start begins to ramp up again in a relatively conservative congestion avoidance phase.

For more on congestion, and for further insight, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analytics at Dynatrace, responsible for DC RUM’s technical marketing programs. He is a co-inventor of multiple performance analysis features, and continues to champion the value of network performance analytics. He is the author of Network Application Performance Analysis (WalrusInk, 2014).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...