Click here to close now.




















Welcome!

Linux Containers Authors: Elizabeth White, Liz McMillan, Pat Romanski, Esmeralda Swartz, Ruxit Blog

Related Topics: Microservices Expo, Java IoT, Linux Containers, Containers Expo Blog, @CloudExpo, @BigDataExpo, SDN Journal

Microservices Expo: Article

Understanding APM on the Network

TCP Window Size

In Part 6, we dove into the Nagle algorithm - perhaps (or hopefully) something you'll never see. In Part VII, we get back to "pure" network and TCP roots as we examine how the TCP receive window interacts with WAN links.

TCP Window Size
Each node participating in a TCP connection advertises its available buffer space using the TCP window size field. This value identifies the maximum amount of data a sender can transmit without receiving a window update via a TCP acknowledgement; in other words, this is the maximum number of "bytes in flight" - bytes that have been sent, are traversing the network, but remain unacknowledged. Once the sender has reached this limit and exhausted the receive window, the sender must stop and wait for a window update.

The sender transmits a full window then waits for window updates before continuing. As these window updates arrive, the sender advances the window and may transmit more data.

Long Fat Networks
High-speed, high-latency networks, sometimes referred to as Long Fat Networks (LFNs), can carry a lot of data. On these networks, small receive window sizes can limit throughput to a fraction of the available bandwidth. These two factors - bandwidth and latency - combine to influence the potential impact of a given TCP window size. LFNs networks make it possible - common, even - for a sender to transmit very fast (high bandwidth) an entire TCP window's worth of data, having then to wait until the packets reach the distant remote site (high latency) so that acknowledgements can be returned, informing the sender of successful data delivery and available receive buffer space.

The math (and physics) concepts are straightforward. As the network speed increases, data can be clocked out onto the network medium more quickly; the bits are literally closer together. As latency increases, these bits take longer to traverse the network from sender to receiver. As a result, more bits can fit on the wire. As LFNs become more common, exhausting a receiver's TCP window becomes increasingly problematic for some types of applications.

Bandwidth Delay Product
The Bandwidth Delay Product (BDP) is a simple formula used to calculate the maximum amount of data that can exist on the network (referred to as bits or bytes in flight) based on a link's characteristics:

  • Bandwidth (bps) x RTT (seconds) = bits in flight
  • Divide the result by 8 for bytes in flight

If the BDP (in bytes) for a given network link exceeds the value of a session's TCP window, then the TCP session will not be able to use all of the available bandwidth; instead, throughput will be limited by the receive window (assuming no other constraints, of course).

The BDP can also be used to calculate the maximum throughput ("bandwidth") of a TCP connection given a fixed receive window size:

  • Bandwidth = (window size *8)/RTT

In the not-too-distant past, the TCP window had a maximum value of 65535 bytes. While today's TCP implementations now generally include a TCP window scaling option that allows for negotiated window sizes to reach 1GB, many factors limit its practical utility. For example, firewalls, load balancers and server configurations may purposely disable the feature. The reality is that we often still need to pay attention to the TCP window size when considering the performance of applications that transfer large amounts of data, particularly on enterprise LFNs.

As an example, consider a company with offices in New York and San Francisco; they need to replicate a large database each night, and have secured a 20Mbps network connection with 85 milliseconds of round-trip delay. Our BDP calculation tells us that the BDP is 212,500 (20,000,000 x .085 *8); in other words, a single TCP connection would require a 212KB window in order to take advantage of all of the bandwidth. The BDP calculation also tells us that the configured TCP window size of 65535 will permit approximately 6Mbps throughput (65535*8/.085), less than 1/3 of the link's capacity.

A link's BDP and a receiver's TCP window size are two factors that help us to identify the potential throughput of an operation. The remaining factor is the operation itself, specifically the size of individual request or reply flows. Only flows that exceed the receiver's TCP window size will benefit from, or be impacted by, these TCP window size constraints. Two common scenarios help illustrate this. Let's say a user needs to transfer a 1GB file:

  • Using FTP (in stream mode) will cause the entire file to be sent in a single flow; this operation could be severely limited by the receive window.
  • Using SMB (at least older versions of the protocol) will cause the file to be sent in many smaller write commands, as SMB used to limit write messages to under 64KB; this operation would not be able to take advantage of a TCP receive window of greater than 64K. (Instead, the operation would more likely be limited by application turns and link latency; we discuss chattiness in Part 8.)

For more networking tips, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analysis at Compuware APM. He has global field enablement responsibilities for performance monitoring and analysis solutions embracing emerging and strategic technologies, including WAN optimization, thin client infrastructures, network forensics, and a unique performance management maturity methodology. He is also a co-inventor of multiple analysis features, and continues to champion the value of software-enabled expert network analysis.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The Internet of Things is in the early stages of mainstream deployment but it promises to unlock value and rapidly transform how organizations manage, operationalize, and monetize their assets. IoT is a complex structure of hardware, sensors, applications, analytics and devices that need to be able to communicate geographically and across all functions. Once the data is collected from numerous endpoints, the challenge then becomes converting it into actionable insight.
With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and analyzed? As an area of investment, how might a retail company move towards an innovation methodolo...
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Treloar, President and COO of Bebaio, will explore examples of brands transforming their businesses by t...
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advanced analytics, and DevOps to advance innovation and increase agility. Specializing in designing, imple...
As more and more data is generated from a variety of connected devices, the need to get insights from this data and predict future behavior and trends is increasingly essential for businesses. Real-time stream processing is needed in a variety of different industries such as Manufacturing, Oil and Gas, Automobile, Finance, Online Retail, Smart Grids, and Healthcare. Azure Stream Analytics is a fully managed distributed stream computation service that provides low latency, scalable processing of streaming data in the cloud with an enterprise grade SLA. It features built-in integration with Azur...
SYS-CON Events announced today that Micron Technology, Inc., a global leader in advanced semiconductor systems, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Micron’s broad portfolio of high-performance memory technologies – including DRAM, NAND and NOR Flash – is the basis for solid state drives, modules, multichip packages and other system solutions. Backed by more than 35 years of technology leadership, Micron's memory solutions enable the world's most innovative computing, consumer,...
Contrary to mainstream media attention, the multiple possibilities of how consumer IoT will transform our everyday lives aren’t the only angle of this headline-gaining trend. There’s a huge opportunity for “industrial IoT” and “Smart Cities” to impact the world in the same capacity – especially during critical situations. For example, a community water dam that needs to release water can leverage embedded critical communications logic to alert the appropriate individuals, on the right device, as soon as they are needed to take action.
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts, GM of Platform at FinancialForce.com, will discuss the value of business applications on wearable ...
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of IoT applications and projects. Business operations, IT, and data scientists need advanced analytics t...
In his session at @ThingsExpo, Lee Williams, a producer of the first smartphones and tablets, will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater. He will explain how M2M controllers work through wirelessly connected remote controls; and specifically delve into a retrofit option that reverse-engineers control codes of existing conventional controller systems so they don't have to be replaced and are instantly converted to become smart, connected devices.
SYS-CON Events announced today that IceWarp will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IceWarp, the leader of cloud and on-premise messaging, delivers secured email, chat, documents, conferencing and collaboration to today's mobile workforce, all in one unified interface
Akana has announced the availability of the new Akana Healthcare Solution. The API-driven solution helps healthcare organizations accelerate their transition to being secure, digitally interoperable businesses. It leverages the Health Level Seven International Fast Healthcare Interoperability Resources (HL7 FHIR) standard to enable broader business use of medical data. Akana developed the Healthcare Solution in response to healthcare businesses that want to increase electronic, multi-device access to health records while reducing operating costs and complying with government regulations.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.