Welcome!

Linux Containers Authors: Zakia Bouachraoui, Elizabeth White, Liz McMillan, Yeshim Deniz, Pat Romanski

Related Topics: @DevOpsSummit, Microservices Expo, Linux Containers, Containers Expo Blog

@DevOpsSummit: Blog Feed Post

Digital Performance Management | @DevOpsSummit #DevOps #Microservices

The easiest way to run a known transaction end to end from the user device to back-end services

Meet the Three Musketeers of Digital Performance Management: Real, Synthetic and Virtual Users
By James Urquhart

Alexandre Dumas’s classic portrayal of a young man seeking to join the elite guard of his day seems an unlikely source of inspiration for a blog post about digital performance management, but there’s something about groups of three — each balancing the others’ strengths and weaknesses — that makes a great team.

And, while most operators today might view digital systems monitoring in terms of two players — synthetic and real users — there is a third member of the team that turns performance monitoring into performance management: the virtual user.

What does each user agent represent?

To understand how real, synthetic, and virtual user agents complement each other, it’s critical to understand what each represents. Sorting out why one might need both synthetic users and virtual users, for example — or even what the difference between the two might be — can be quite confusing.

Here’s a useful guide to the three user types.

Real users
Monitoring the actual experiences of users running in all of the different network, platform, device and geographical environments that your site or application will experience is absolutely essential to creating a near optimal user experience each and every time.

Real users allow you to measure what the end user actually experiences through their front end stack (browser or app, OS, etc), but at the cost of being able to control the conditions in which the user is running those stacks. Being able to capture anomalies quickly, especially for things like key transactions or usage under exceptional loads requires the ability to collect data with more known initial conditions or baselines.

Synthetic users
The easiest way to run a known transaction end to end from the user device to backend services with known conditions is to use an artificial “user” to drive that transaction. Synthetic user monitoring simplifies asking questions like “is the backend behaving the way it should at this moment for this transaction” or “are users on the east coast of the US experiencing worse performance than users in Europe?”

Unfortunately, because these systems don’t scale well, and these synthetic users can themselves affect performance if they generate too much load, these users don’t scale well at all. So, how do you create a baseline of expected behavior on the backend systems that have to scale to meet customer demand when stressed?

Virtual users
Virtual users aren’t meant to be used as day-to-day real time monitoring of current conditions, but are intended more to give a solid baseline measurement of backend performance under varying amounts of load.
Those baselines can be regularly verified in production, and operators can be warned if virtual user performance slips out of expected ranges.

Virtual users can also be run at incredible scales during scheduled load and stress tests. Their initial conditions can be closely controlled, though the combination of scale and control of conditions comes at the cost of driving load primarily against the backend, without driving actual browsers or mobile applications.

How virtual users complement real and synthetic users
So if those are the three musketeers, and we have a pretty good idea of how synthetic and real user monitoring complement each other let’s explore what virtual users bring to digital performance management.

As our CEO, Tom Lounibos, is wont to say, cloud testing introduced the concept of load testing actual production systems, instead of focusing only on “staging” environments before release to production. This is a powerful concept for today’s rapidly evolving digital applications, but it’s only possible if the load testing system is capable of dynamically adjusting load from an extremely light baseline to a massive peak load without rebuilding the load tests.

The way SOASTA achieves this is by utilizing CloudTest to drive virtual users through the system at a load that can be adjusted throughout a test run as needed. So you can choose to either run “baseline” tests as separate tests from time to time, or continuously run a load test that can be throttled up and down as needed over time.

Low levels of testing give you a baseline of behavior for these test users, which can be compared to behavior when the throttle is turned up. (Low level tests are also great for finding code changes that negatively affect performance or break the load test scripts before a critical load test finds them first.)

This comes at the cost of not using actual browser and device profiles, of course. You won’t know from a virtual user if the experience is better in Chrome or IE, for instance, from a virtual user in a load test. However, you will be able to confirm that your backend servers can handle any anticipated (and all but the most unimaginable unanticipated) loads when they come.

How real and synthetic users complement virtual users
Equally important to the information that virtual users brings to understanding digital performance is the power of utilizing real and synthetic user measurements when designing virtual user load tests. Beyond the simple comparisons of all three types of data — which alone can help greatly with troubleshooting performance and availability problems — there is the power of using real and synthetic data to shape the tests you run.

Example 1: Real user monitoring data will tell you a lot about the situation that cost you the most in terms of whatever your conversion metric might be

Sometimes the situations that cost you the most aren’t obvious. We’ve seen situation in which specific product pages had serious conversion issues, though not all such pages did. Real user data can make that clear, and then load tests can be created to test that condition, at least until you’ve confirmed the problem no longer exists. (Even then you can run the test occasionally as a form of regression testing.)

Example 2: Using the virtual user baselines noted above as additional baselines for real and synthetic user measurements

Does your backend perform differently under varying loads? When is a real or synthetic measurement truly an anomaly vs expected (though not necessarily “acceptable”) behavior? Having a strong, controlled profile of your system performance gives you greater confidence in tagging events as unexpected versus expected.

Takeaway
The most complete protection against performance-related failure needs a three-user team with:

  • synthetic users giving you a sense of user experience in well regulated “experiments” across browsers and devices,
  • real user monitoring telling you about the actual experiences discovered by actual users, and
  • virtual users enabling you to build a feedback loop to test, measure, and verify performance variability and resiliency.

With this combination, you have the makings of a complete picture of where, how, and why performance affects user outcomes.

And understanding user outcomes enables understanding both business and technical outcomes.

Related reading:

More Stories By SOASTA Blog

The SOASTA platform enables digital business owners to gain unprecedented and continuous performance insights into their real user experience on mobile and web devices in real time and at scale.

IoT & Smart Cities Stories
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
Whenever a new technology hits the high points of hype, everyone starts talking about it like it will solve all their business problems. Blockchain is one of those technologies. According to Gartner's latest report on the hype cycle of emerging technologies, blockchain has just passed the peak of their hype cycle curve. If you read the news articles about it, one would think it has taken over the technology world. No disruptive technology is without its challenges and potential impediments t...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...