Welcome!

Linux Containers Authors: Zakia Bouachraoui, Elizabeth White, Yeshim Deniz, Liz McMillan, Pat Romanski

Related Topics: @DevOpsSummit, Microservices Expo, Linux Containers, Containers Expo Blog

@DevOpsSummit: Blog Post

Application Performance Analytics | @DevOpsSummit @Dynatrace #DevOps #APM

How network and application metrics can be derived from a network probe, combined and analyzed to provide insights

Why a discussion around Application Performance Analytics? There's a lot of buzz in this industry around the topic of performance analytics - an informal subset of IT operations analytics (ITOA) - as a solution to the growing mountains of monitoring data and the increasing complexity of application and network architectures.

At the same time, there exist many purpose-built performance analysis solutions. Many are domain-centric - server monitoring and network monitoring, for example - while some exhibit a key ITOA characteristic by incorporating and correlating data from multiple sources. Most perform some level of analysis to expose predefined insights.

Application Performance Analytics: Viewed Through a Simple Framework
In this blog, I'll outline a simple analytics framework that illustrates how network and application metrics can be derived from a network probe ("wire data" to use the increasingly popular term), combined and analyzed to provide insights that are greater than the sum of the parts. (In fact, that is one of the core promises of ITOA.) I'll conclude by pointing out some of the more advanced analysis capabilities this framework might need to become a viable modern-day solution.

First, a bit of a disclaimer. My initial intent was to write about the new release of Dynatrace DC RUM; that was the assigned task. But I know if I started touting features - especially if I used ubiquitous (and usually meaningless) qualifiers such as "exciting, industry-leading, breakthrough, and best-of-breed," you'd probably stop reading. And rightly so; you don't come to this blog for product info, which is readily available here and here. (See what I did there?) Instead, I chose one of DC RUM's focus areas - advanced analytics - as an opportunity to wax technical; you can consider the framework a simplification and abstraction of one of the multiple approaches that DC RUM uses for automated fault domain isolation (FDI).

To keep this blog relatively simple, I'll use the example of a web page - although the framework would apply to any application that uses a request/reply paradigm; to be more universal, I'll switch terms slightly:

  • A transaction is the page load time that the user experiences
  • A hit is a component of the transaction -an image, stylesheet, JavaScript, JavaServer Page, etc.

Application Performance Analytics: Foundation & Key Insights
The Foundation: Hit Performance
Hit-level performance is the basic building block for the framework; it represents the smallest unit of measurement at the application layer, incorporating request and reply message flows as well as server processing delays. The measurement itself is quite straightforward; virtually any AA NPM probe would provide this (it's often referred to as session-layer response time), and the only decode requirement is to identify the TCP ports used. A hit begins with a client request message (PDU) that the client's TCP stack segments into packets for transfer across the network; this is observed by the probe as the request flow. A hit concludes with the server's reply message that is similarly segmented into packets for transfer across the network in the reply flow.

Often, the probe will sit near the application server, not the client, so a small adjustment should be made to the elapsed hit time observed at the server; add ½ of the network round-trip time (RTT) to the beginning and to the end of the measurement to arrive at a more accurate estimate of the performance at the client node. (RTT can be estimated by examining SYN/SYN/ACK handshakes - if they exist - or by more sophisticated ACK timing measurements.)

Timing diagram of a hit measurement

Allocating delays to client, network and server categories starts by calculating the duration of the request and reply flows. At this coarse level, we have a very simple network/server breakdown, but we'll need to apply additional analytics to make it useful. While it's a relatively safe assumption that the delay between the last packet of the client request flow and the first packet of the server reply flow should be allocated to server time, it is not appropriate to assume that the duration of the request and reply flows should be allocated to network time. Instead, when a flow's throughput is low, we should evaluate whether this is caused by the sender or the receiver before we blame the network. For example:

  • The receiver can limit throughput by advertising a TCP window size smaller than the MSS (frequently - and crudely - identified as Win0 events).
  • The sender may be the culprit if it can't deliver packets to the network fast enough; we sometimes refer to this as "sender starved for data."

We can consider the remaining flow duration as network time - still a pretty broad category. To further understand network time, we would want to evaluate for packet loss and retransmission as well as TCP receive window constraints in relationship to the BDP.

A more sophisticated analysis would include tests for additional less-common behaviors such as Nagle, application windowing, and TCP slow start; you can read detailed discussions on these and other network-visible performance bottlenecks by downloading the eBook Network Application Performance Analysis.

Click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analytics at Dynatrace, responsible for DC RUM’s technical marketing programs. He is a co-inventor of multiple performance analysis features, and continues to champion the value of network performance analytics. He is the author of Network Application Performance Analysis (WalrusInk, 2014).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...