Welcome!

Linux Containers Authors: Robert Reeves, Pat Romanski, Flint Brenton, Anders Wallgren, Elizabeth White

Related Topics: Linux Containers

Linux Containers: Article

Stop Malicious Code Execution at the Kernel Level

An in-depth look at the DigSig solution

This article presents a Linux kernel module capable of verifying digital signatures of ELF binaries before running them. This kernel module is available under the GPL license at http://sourceforge.net/projects/disec, and has been successfully tested for kernel 2.5.66 and above.

Why Check the Signature of Your Binaries Before Running Them?
The problem with blindly running executables is that you are never sure they actually do what you think they are supposed to do (and nothing more). Viruses spread so much on Microsoft Windows systems mainly because users are frantic to execute whatever they receive, especially if the title is appealing. The LoveLetter virus, with over 2.5 million machines infected, is a famous illustration of this. Yet Linux is unfortunately not immune to malicious code either. By executing unknown and untrusted code, users are exposed to a wide range of Unix worms, viruses, trojans, backdoors, and so on. To prevent this, a possible solution is to digitally sign binaries you trust, and have the system check their digital signature before running them: if the signature cannot be verified, the binary is declared corrupt and the operating system will not let it run.

Related Work
There have already been several initiatives in this domain, such as Tripwire, BSign, Cryptomark, and IBM's Signed Executables, but we believe the DigSig project is the first to be both easily accessible to all (available on Sourceforge, under the GPL license) and to operate at the kernel level (see Table 1).

 

The DigSig Solution
To avoid reinventing the wheel, we based our solution on the existing open source project BSign, a Debian userspace binary signing package. BSign signs the binaries and embeds the signature in the binary itself. Then, at kernel level, DigSig verifies these signatures at execution time and denies execution if the signature is invalid.

Typically, in our approach, binaries are not signed by vendors, rather we hand over control of the system to the local administrator, who is responsible for signing all binaries he or she trusts with his or her private key. Then, those binaries are verified with the corresponding public key. This means you can still use your favorite (signed) binaries: no change in habits. Basically, DigSig guarantees only two things: (1) if you signed a binary, nobody other than you can modify that binary without being detected, and (2) nobody can run a binary that is not signed or is badly signed. Of course, you should be careful not to sign untrusted code: if malicious code is signed, all security benefits are lost.

How Do I Use DigSig?
DigSig is fairly simple to use. First, you need to sign all binaries you trust with BSign (version 0.4.5 or higher). Then you need to load DigSig with the public key that corresponds to the private key used to sign the binaries.

The following shows step by step how to sign the executable "ps":

$ cp 'which ps' ps-test
$ bsign -s ps-test // Sign the binary
$ bsign -V ps-test // Verify the validity of the signature

Next, install the DigSig kernel module. To do so, a recent kernel version is required (2.5.66 or higher), compiled with security options enabled (CONFIG_SECURITY=y). To compile DigSig, assuming your kernel source directory is /usr/src/linux-2.5.66, you do:

$ cd digsig
$ make -C /usr/src/linux-2.5.66 SUBDIRS=$PWD modules
$ cd digsig/tools && make

This builds the DigSig kernel module (digsig_verif.ko), and you're probably already halfway through the command to load it, but wait! If you are not cautious about the following point, you might secure your machine so well you'll basically freeze it. As a matter of fact, once DigSig is loaded, verification of binary signatures is activated. At that time, binaries will be able to run only if their signature is successfully verified. In all other cases (invalid signature, corrupted file, no signature...), execution of the binary will be denied. Consequently, if you forget to sign an essential binary such as /sbin/reboot, or /sbin/rmmod, you'll be most embarrassed to reboot the system if you have to. Therefore, for testing purposes, we recommend you initially run DigSig in debug mode. To do this, compile DigSig with the DSI_DIGSIG_DEBUG and DSI_DEBUG flags set in the Makefile:

EXTRA_CFLAGS += -DDSI_DEBUG -DDSI_DIGSIG_DEBUG -I $(obj)

In debug mode, DigSig lets unsigned binaries run. This state is ideal to test DigSig, and also list the binaries you need to sign to get a fully operational system.

Once this precaution has been taken it's time to load the DigSig module, with your public key as argument. BSign uses GnuPG keys to sign binaries, so retrieve your public key as follows:

$ gpg --export >> my_public_key.pub

Then log as root, and use the digsig.init script to load the module.

# ./digsig.init start my_public_key.pub
Testing if sysfs is mounted in /sys.
sysfs found
Loading Digsig module.
Loading public key.
Done.

This is it: signature verification is activated. You can check the signed ps executable (ps-test) works:

$./ps-test
$ su
Password:
# tail -f /var/log/messages
Sep 16 15:49:16 colby kernel: DSI-LSM MODULE - binary is ./ps-test
Sep 16 15:49:16 colby kernel: DSI-LSM MODULE - dsi_bprm_compute_creds: Found signature
section
Sep 16 15:49:16 colby kernel: DSI-LSM MODULE - dsi_bprm_compute_creds: Signature
verification successful

But, corrupted executables won't run:

$ ./ps-corrupt
bash: ./ps-corrupt: Operation not permitted
Sep 16 15:55:20 colby kernel: DSI-LSM MODULE - binary is ./ps-corrupt
Sep 16 15:55:20 colby kernel: DSI-LSM MODULE Error - dsi_bprm_compute_creds: Signatures
do not match for ./ps-corrupt

If the permissive debug mode is set, signature verification is skipped for unsigned binaries. Otherwise, the control is strictly enforced in the normal behavior:

$ ./ps
bash: ./ps: cannot execute binary file
# su
Password:
# tail -f /var/log/messages
Sep 16 16:05:10 colby kernel: DSI-LSM MODULE - binary is ./ps
Sep 16 16:05:10 colby kernel: DSI-LSM MODULE - dsi_bprm_compute_creds:
Signatures do not match

DigSig, Behind the Scenes
The core of DigSig lies in the LSM hooks placed in the kernel's routines for executing a binary. The starting point of any binary execution is a system call to sys_exec(), which triggers do_execve(). This is the transition between user space and kernel space.

The first LSM hook to be called is bprm_alloc_security, where a security structure is optionally attached to the linux_bprm structure that represents the task. DigSig does not use this hook as it doesn't need any specific security structure.

Then, the kernel tries to find a binary handler (search_binary_handler) to load the file. This is when the LSM hook bprm_check_security is called, and precisely when DigSig performs signature verification of the binary. If successful, load_elf_binary() gets called, which eventually calls do_mmap(), then the LSM hook file_mmap(), and finally bprm_free_security().

 

So, this is how DigSig enforces binary signature verification at kernel level. Now, a brief explanation of the signing mechanism of DigSig's userland counterpart: BSign. When signing an ELF binary, BSign stores the signature in a new section in the binary. To do so, it modifies the ELF's section header table to account for this new section, with the name "signature" and a user defined type 0x80736967 (which comes from the ASCII characters "s", "i", and "g"). You can check your binary's section header table with the command readelf -S <binary>. It then performs a SHA1 hash on the entire file, after having zeroed the additional signature section. Next it prefixes this hash with "#1; bsign v%s" where %s is the version number of BSign, and stores the result at the begining of the binary's signature section. Finally, BSign calls GnuPG to sign the signature section (containing the hash), and stores the signature at the current position of the signature section. A short compatibility note: GnuPG adds a 32-byte timestamp and a signature class identifier in the buffer it signs.

 

On a cryptographic point of view, DigSig needs to verify BSign's signatures, i.e., RSA signatures. More precisely, this consists in, on one side, hashing the binary with a one-way function (SHA-1) and padding the result (EMSA PKCS1 v1.5), and, on the other side, "decrypting" the signature with the public key and verifying this corresponds to the padded text.

PKCS#1 padding is pretty simple to implement, so we had no problems coding it. Concerning SHA-1 hashing, we used Linux's kernel CryptoAPI:

  • We allocate a crypto_tfm structure (crypto_alloc_tfm), and use it to initialize the hashing process (crypto_digest_init).
  • Then we read the binary block by block, and feed it to the hashing routine (crypto_digest_update).
  • Finally, we retrieve the hash (crypto_digest_final).
The trickiest part is most certainly the RSA verification because the CryptoAPI does not support asymetric algorithms (such as RSA) yet, so we had to implement it. The theory behind RSA is relatively simple: it consists in a modular exponentation (m^e mod n) using very large primes; however, in practice, everybody will agree that implementing an efficient big number library is tough work. So, instead of writing ours, we decided it would be safer to use an existing one and adapt it to kernel restrictions. We decided to port GnuPG's math library (which is actually derived from GMP, GNU's math library):
  • Only the RSA signature verification routines have been kept. For instance, functions to generate large primes have been erased.
  • Allocations on the stack have been limited to the strict minimum.
How Much Does It Slow the System Down?
We have performed two different kinds of benchmarks for DigSig: a benchmark of the real impact of DigSig for users (how much they feel the system is slowed down), and a more precise benchmark evaluating the exact overhead induced by our kernel module.

The first set of benchmarks has been performed by comparing how long it takes to run an executable with or without DigSig. To do so, we used the command "time" over fast to longer executions. The following benchmark has been run 20 times:

% time /bin/ls -Al   # times /bin/ls
% time ./digsig.init compile    # times compilation with gcc
% time tar jxvfp linux-2.6.0-test8.tar.bz2 # times tar

On a Pentium 4, 2.2GHz, with 512MB of RAM, with DigSig using GnuPG's math library, we obtained the results displayed in Table 2. They clearly show that the impact of DigSig is quite important for short executions (such as ls) but soon becomes completely negligible for longer executions such as compiling a project with gcc, or untarring sources with tar.

 

Second, we measured the exact overhead introduced by our kernel module. To do so, we basically compared jiffies at the beginning and at the end of bprm_check_security. In brief, jiffies represent the number of clock ticks since the system has booted, so they are a precise way to measure time in the Linux kernel. In our case, jiffies are in milliseconds. We have run each binary 30 times (see Table 3) for DigSig compiled with GnuPG.

 

The results show that, naturally, the digital signature verification overhead increases with the executable's size (which is not a surprise because it takes longer to hash all data).

Finally, to assist us in optimizing our code, we have run Oprofile, a system profiler for Linux, over DigSig (see Table 4). Results clearly indicate that the modular exponentiation routines are the most expensive, so this is where we should concentrate our optimization efforts for future releases. More particularly, we plan to port ASM code of math libraries to the kernel, instead of using pure C code.

 

Conclusion and Future Work
We've shown how DigSig can help you in mitigating the risk of running malicious code. Our future work will focus on two main areas: performance and features.

Obviously, as signature verification overhead impacts all binaries, it is important to optimize it. There are several paths we might follow such as caching signature verification, sporadically verifying signatures, or optimizing math libraries.

From a feature point of view, we recently implemented digital signature verification of shared libraries: if malicious code is inserted into a library, all executables (even signed ones) that link to this library are compromised, which is a severe limitation. This implementation is currently in the testing phase and will be released soon.

References

  • Wraight, C. (2003). "Securing Your Linux Environment." LinuxWorld Magazine, Vol 1, issue 2.
  • Tripwire: www.tripwire.com
  • Bsign: http://packages.qa.debian.org/b/bsign.html
  • Cryptomark: www.immunix.org/cryptomark.html
  • Van Doorn, L., Ballintijn, G., Arbaugh, W.A., Signed Executables for Linux, January 2003.
  • GnuPG: www.gnupg.org
  • OProfile: http://oprofile.sourceforge.net LinuxWorld Magazine www.LinuxWorld.com
  • More Stories By Makan Pourzandi

    Makan Pourzandi received his doctoral degree on parallel computing in 1995 from the University of Lyon, France. He works for Ericsson Research
    Canada in the Open Systems Research Department. His research domains are security, cluster computing, and component-based methods for
    distributed programming. He has more than 7 publications in International conferences with reference committees. Makan has delivered several talks
    at universities, international conferences, and Open Source forums. He is involved in several Open Source projects: Distributed Security
    Infrastructure (disec.sourceforge.net), and a contributer to the
    security requirements of the Open Source Development Lab (OSDL) Carrier Grade Linux (CGL).

    More Stories By Axelle Apvrille

    Axelle Apvrille currently works for Ericsson Research Canada in the Open Systems Research Department. Her
    research interests are cryptography, security protocols and distributed
    security. She received her computer science engineering degree in 1996
    at ENSEIRB, Bordeaux, France.

    More Stories By David Gordon

    David Gordon has a bachelor’s degree from the university of Sherbrooke. His interests include security and next-generation networks.

    More Stories By Vincent Roy

    Vincent Roy is an electrical engineering student at Sherbrooke University (Canada). He has been working on Linux kernel–related project since his first internship.

    Comments (1) View Comments

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    Most Recent Comments
    jackie113 07/11/07 05:07:35 AM EDT

    PlayStation 3 is not only an expensive game console but also an excellent video player. It could play high-def Blu-ray movies in addition to standard DVDs with a Blu-ray drive

    www.mp4-converter.net/ps3-converter/

    @ThingsExpo Stories
    SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
    You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
    So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, will provide tips on how to be successful in large scale machine lear...
    In his session at @ThingsExpo, Chris Klein, CEO and Co-founder of Rachio, will discuss next generation communities that are using IoT to create more sustainable, intelligent communities. One example is Sterling Ranch, a 10,000 home development that – with the help of Siemens – will integrate IoT technology into the community to provide residents with energy and water savings as well as intelligent security. Everything from stop lights to sprinkler systems to building infrastructures will run ef...
    Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
    Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, will discuss how research has demonstrated the value of Machine Learning in delivering next generation analytics to im...
    There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
    This is not a small hotel event. It is also not a big vendor party where politicians and entertainers are more important than real content. This is Cloud Expo, the world's longest-running conference and exhibition focused on Cloud Computing and all that it entails. If you want serious presentations and valuable insight about Cloud Computing for three straight days, then register now for Cloud Expo.
    IoT device adoption is growing at staggering rates, and with it comes opportunity for developers to meet consumer demand for an ever more connected world. Wireless communication is the key part of the encompassing components of any IoT device. Wireless connectivity enhances the device utility at the expense of ease of use and deployment challenges. Since connectivity is fundamental for IoT device development, engineers must understand how to overcome the hurdles inherent in incorporating multipl...
    The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
    SYS-CON Events announced today that Stratoscale, the software company developing the next generation data center operating system, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Stratoscale is revolutionizing the data center with a zero-to-cloud-in-minutes solution. With Stratoscale’s hardware-agnostic, Software Defined Data Center (SDDC) solution to store everything, run anything and scale everywhere...
    Angular 2 is a complete re-write of the popular framework AngularJS. Programming in Angular 2 is greatly simplified – now it's a component-based well-performing framework. This immersive one-day workshop at 18th Cloud Expo, led by Yakov Fain, a Java Champion and a co-founder of the IT consultancy Farata Systems and the product company SuranceBay, will provide you with everything you wanted to know about Angular 2.
    SYS-CON Events announced today that Men & Mice, the leading global provider of DNS, DHCP and IP address management overlay solutions, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. The Men & Mice Suite overlay solution is already known for its powerful application in heterogeneous operating environments, enabling enterprises to scale without fuss. Building on a solid range of diverse platform support,...
    You deployed your app with the Bluemix PaaS and it's gaining some serious traction, so it's time to make some tweaks. Did you design your application in a way that it can scale in the cloud? Were you even thinking about the cloud when you built the app? If not, chances are your app is going to break. Check out this webcast to learn various techniques for designing applications that will scale successfully in Bluemix, for the confidence you need to take your apps to the next level and beyond.
    We’ve worked with dozens of early adopters across numerous industries and will debunk common misperceptions, which starts with understanding that many of the connected products we’ll use over the next 5 years are already products, they’re just not yet connected. With an IoT product, time-in-market provides much more essential feedback than ever before. Innovation comes from what you do with the data that the connected product provides in order to enhance the customer experience and optimize busi...
    SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
    Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
    Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
    Digital payments using wearable devices such as smart watches, fitness trackers, and payment wristbands are an increasing area of focus for industry participants, and consumer acceptance from early trials and deployments has encouraged some of the biggest names in technology and banking to continue their push to drive growth in this nascent market. Wearable payment systems may utilize near field communication (NFC), radio frequency identification (RFID), or quick response (QR) codes and barcodes...
    SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including cloud...