Welcome!

Linux Containers Authors: Liz McMillan, Yeshim Deniz, Elizabeth White, Pat Romanski, Zakia Bouachraoui

Related Topics: Linux Containers, Microservices Expo, @CloudExpo, @DXWorldExpo

Linux Containers: Blog Post

The Taming of the Skew | @CloudExpo #Cloud #BigData #Analytics

Two types of skewness: the statistical skew impacts data analysis, and the operational skew impacts operational processes

The Taming of the Skew
By Dr. Laura Gardner, VP, Products, CLARA Analytics

In the famous comedy by William Shakespeare, "The Taming of the Shrew," the main plot depicts the courtship of Petruchio and Katherina, the headstrong, uncooperative shrew. Initially, Katherina is an unwilling participant in the relationship, but Petruchio breaks down her resistance with various psychological torments, which make up the "taming" - until she finally becomes agreeable.

An analogous challenge exists when using predictive analytics with healthcare data. Healthcare data can often seem quite stubborn, like Katherina. One of the main features of healthcare data that needs to be "tamed" is the "skew" of the data. In this article, we describe two types of skewness: the statistical skew, which impacts data analysis, and the operational skew, which impacts operational processes.

The Statistical Skew
Because the distribution of healthcare costs is bounded on the lower end - that is, the cost of healthcare services is never less than zero but ranges widely on the upper end, sometimes into the millions of dollars - the frequency distribution of costs is a skewed distribution. More specifically, in the following plot of frequency by cost, the distribution of healthcare costs is right-skewed because the long tail is on the right (and the coefficient of skewness is positive):

This skewness is present whether we are looking at total claim expense in the workers' compensation sector or annual expenses in the group health sector. Why is this a problem? Simply because the most common methods for analyzing data depend on the ability to assume that there is a normal distribution, and a right-skewed distribution is clearly not normal. It fails to conform to the assumption of normality. To produce reliable and accurate predictions and generalizable results from analyses of healthcare costs, the data need to be "tamed" (i.e., various sophisticated analytic techniques must be utilized to deal with the right-skewness of the data). Among these techniques are logarithmic transformation of the dependent variable, random forest regression, machine learning, topical analysis and others.

It's essential to keep this in mind in any analytic effort with healthcare data, especially in workers' compensation. To get the required level of accuracy, we need to think "non-normal" and get comfortable with the "skewed" behavior of the data.

Operational Skew
There is an equally pervasive operational skew in workers' compensation that calls out for a radical change in business models. The operational skew is exemplified by:

  • The 80/20 split between simple, straightforward claims that can be auto-adjudicated and more complex claims that have the potential to escalate or incur attorney involvement (i.e., 80 percent of the costs come from 20 percent of the claims).
  • The even more extreme 90/10 split between good providers delivering state-of-the-art care and the "bad apples" whose care is less effective, less often compliant with evidence-based guidelines or more expensive for a similar or worse result. (i.e., 90 percent of the costs come from 10 percent of the providers).

How can we deal with operational skew? The first step is to be aware of it and be prepared to use different tactics depending on which end of the skew you're dealing with. In the two examples just given, we have observed that by using the proper statistical approaches:

  • Claims can be categorized as early as Day 1 into low vs. high risk with respect to potential for cost escalation or attorney involvement. This enables payers to apply the appropriate amount of oversight, intervention and cost containment resources based on the risk of the claim.
  • Provider outcomes can be evaluated, summarized and scored, thus empowering network managers to fine-tune their networks and claims adjusters to recommend the best doctors to each injured worker.

Both of these examples show that what used to be a single business process -managing every claim by the high-touch, "throw a nurse or a doctor at every claim" approach, as noble as that sounds - now requires the discipline to enact two entirely different business models in order to be operationally successful. Let me explain.

The difference between low- and high-risk claims is not a subtle distinction. Low-risk claims should receive a minimum amount of intervention, just enough oversight to ensure that they are going well and staying within expected parameters. Good technology can help provide this oversight. Added expense, such as nurse case management, is generally unnecessary. Conversely, high-risk claims might need nurse and/or physician involvement, weekly or even daily updates, multiple points of contact and a keen eye for opportunities to do a better job navigating this difficult journey with the recovering worker.

The same is true for managing your network. It would be nice if all providers could be treated alike, but in fact, a small percentage of providers drives the bulk of the opioid prescribing, attorney involvement, liens and independent medial review (IMR) requests. These "bad apples" are difficult to reform and are best avoided, using a sophisticated provider scoring system that focuses on multiple aspects of provider performance and outcomes.

Once you have tamed your statistical skew with the appropriate data science techniques and your operational skew with a new business model, you will be well on your way to developing actionable insights from your predictive modeling. With assistance from the appropriate technology and operational routines, the most uncooperative skewness generally can be tamed. Are you ready to "tame the skew"?

Read Dr. Gardner's first two articles in this series:

Five Best Practices to Ensure the Injured Workers Comes First

Cycle Time is King

As first published in Claims Journal.

###

Laura B. Gardner, M.D., M.P.H., Ph.D., is an expert in analyzing U.S. health and workers' compensation data with a focus on predictive modeling, outcomes assessment, design of triage and provider evaluation software applications, program evaluation and health policy research. She is a successful entrepreneur with more than 20 years of experience in starting and building Axiomedics Research, Inc.

Dr. Gardner earned her bachelor's degree in biology (magna cum laude) from Brandeis University, her M.D. from Albert Einstein College of Medicine and both an M.P.H. in health policy and a Ph.D. in health economics from the University of California at Berkeley. As a physician, she is board certified in General Preventive Medicine and Public Health and is a fellow of the American College of Preventive Medicine.

For more information, visit http://www.claraanalytics.com/ and follow CLARA Analytics on LinkedInFacebook and Twitter.

More Stories By CLARA Analytics

CLARA analytics empowers workers’ compensation claims teams to rapidly get injured workers back on track with easy-to-use artificial intelligence (AI)-based products. Its CLARA providers search engine is an award-winning provider scoring engine that helps rapidly connect injured workers to the right providers, while CLARA claims is an early warning system that helps frontline claims teams efficiently manage claims, reduce escalations and understand the drivers of complexity. CLARA’s customers include a broad spectrum — from the top 25 insurance carriers to small, self-insured organizations.

IoT & Smart Cities Stories
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of ...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, discussed how research has demonstrated the value of Machine Learning in delivering next generation analytics to impr...