Welcome!

Linux Containers Authors: Elizabeth White, Carmen Gonzalez, Yeshim Deniz, Sematext Blog, Liz McMillan

Related Topics: Linux Containers, Microservices Expo, @CloudExpo, @DXWorldExpo

Linux Containers: Blog Post

The Taming of the Skew | @CloudExpo #Cloud #BigData #Analytics

Two types of skewness: the statistical skew impacts data analysis, and the operational skew impacts operational processes

The Taming of the Skew
By Dr. Laura Gardner, VP, Products, CLARA Analytics

In the famous comedy by William Shakespeare, "The Taming of the Shrew," the main plot depicts the courtship of Petruchio and Katherina, the headstrong, uncooperative shrew. Initially, Katherina is an unwilling participant in the relationship, but Petruchio breaks down her resistance with various psychological torments, which make up the "taming" - until she finally becomes agreeable.

An analogous challenge exists when using predictive analytics with healthcare data. Healthcare data can often seem quite stubborn, like Katherina. One of the main features of healthcare data that needs to be "tamed" is the "skew" of the data. In this article, we describe two types of skewness: the statistical skew, which impacts data analysis, and the operational skew, which impacts operational processes.

The Statistical Skew
Because the distribution of healthcare costs is bounded on the lower end - that is, the cost of healthcare services is never less than zero but ranges widely on the upper end, sometimes into the millions of dollars - the frequency distribution of costs is a skewed distribution. More specifically, in the following plot of frequency by cost, the distribution of healthcare costs is right-skewed because the long tail is on the right (and the coefficient of skewness is positive):

This skewness is present whether we are looking at total claim expense in the workers' compensation sector or annual expenses in the group health sector. Why is this a problem? Simply because the most common methods for analyzing data depend on the ability to assume that there is a normal distribution, and a right-skewed distribution is clearly not normal. It fails to conform to the assumption of normality. To produce reliable and accurate predictions and generalizable results from analyses of healthcare costs, the data need to be "tamed" (i.e., various sophisticated analytic techniques must be utilized to deal with the right-skewness of the data). Among these techniques are logarithmic transformation of the dependent variable, random forest regression, machine learning, topical analysis and others.

It's essential to keep this in mind in any analytic effort with healthcare data, especially in workers' compensation. To get the required level of accuracy, we need to think "non-normal" and get comfortable with the "skewed" behavior of the data.

Operational Skew
There is an equally pervasive operational skew in workers' compensation that calls out for a radical change in business models. The operational skew is exemplified by:

  • The 80/20 split between simple, straightforward claims that can be auto-adjudicated and more complex claims that have the potential to escalate or incur attorney involvement (i.e., 80 percent of the costs come from 20 percent of the claims).
  • The even more extreme 90/10 split between good providers delivering state-of-the-art care and the "bad apples" whose care is less effective, less often compliant with evidence-based guidelines or more expensive for a similar or worse result. (i.e., 90 percent of the costs come from 10 percent of the providers).

How can we deal with operational skew? The first step is to be aware of it and be prepared to use different tactics depending on which end of the skew you're dealing with. In the two examples just given, we have observed that by using the proper statistical approaches:

  • Claims can be categorized as early as Day 1 into low vs. high risk with respect to potential for cost escalation or attorney involvement. This enables payers to apply the appropriate amount of oversight, intervention and cost containment resources based on the risk of the claim.
  • Provider outcomes can be evaluated, summarized and scored, thus empowering network managers to fine-tune their networks and claims adjusters to recommend the best doctors to each injured worker.

Both of these examples show that what used to be a single business process -managing every claim by the high-touch, "throw a nurse or a doctor at every claim" approach, as noble as that sounds - now requires the discipline to enact two entirely different business models in order to be operationally successful. Let me explain.

The difference between low- and high-risk claims is not a subtle distinction. Low-risk claims should receive a minimum amount of intervention, just enough oversight to ensure that they are going well and staying within expected parameters. Good technology can help provide this oversight. Added expense, such as nurse case management, is generally unnecessary. Conversely, high-risk claims might need nurse and/or physician involvement, weekly or even daily updates, multiple points of contact and a keen eye for opportunities to do a better job navigating this difficult journey with the recovering worker.

The same is true for managing your network. It would be nice if all providers could be treated alike, but in fact, a small percentage of providers drives the bulk of the opioid prescribing, attorney involvement, liens and independent medial review (IMR) requests. These "bad apples" are difficult to reform and are best avoided, using a sophisticated provider scoring system that focuses on multiple aspects of provider performance and outcomes.

Once you have tamed your statistical skew with the appropriate data science techniques and your operational skew with a new business model, you will be well on your way to developing actionable insights from your predictive modeling. With assistance from the appropriate technology and operational routines, the most uncooperative skewness generally can be tamed. Are you ready to "tame the skew"?

Read Dr. Gardner's first two articles in this series:

Five Best Practices to Ensure the Injured Workers Comes First

Cycle Time is King

As first published in Claims Journal.

###

Laura B. Gardner, M.D., M.P.H., Ph.D., is an expert in analyzing U.S. health and workers' compensation data with a focus on predictive modeling, outcomes assessment, design of triage and provider evaluation software applications, program evaluation and health policy research. She is a successful entrepreneur with more than 20 years of experience in starting and building Axiomedics Research, Inc.

Dr. Gardner earned her bachelor's degree in biology (magna cum laude) from Brandeis University, her M.D. from Albert Einstein College of Medicine and both an M.P.H. in health policy and a Ph.D. in health economics from the University of California at Berkeley. As a physician, she is board certified in General Preventive Medicine and Public Health and is a fellow of the American College of Preventive Medicine.

For more information, visit http://www.claraanalytics.com/ and follow CLARA Analytics on LinkedInFacebook and Twitter.

More Stories By CLARA Analytics

CLARA analytics empowers workers’ compensation claims teams to rapidly get injured workers back on track with easy-to-use artificial intelligence (AI)-based products. Its CLARA providers search engine is an award-winning provider scoring engine that helps rapidly connect injured workers to the right providers, while CLARA claims is an early warning system that helps frontline claims teams efficiently manage claims, reduce escalations and understand the drivers of complexity. CLARA’s customers include a broad spectrum — from the top 25 insurance carriers to small, self-insured organizations.

IoT & Smart Cities Stories
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and Bi...
Codete accelerates their clients growth through technological expertise and experience. Codite team works with organizations to meet the challenges that digitalization presents. Their clients include digital start-ups as well as established enterprises in the IT industry. To stay competitive in a highly innovative IT industry, strong R&D departments and bold spin-off initiatives is a must. Codete Data Science and Software Architects teams help corporate clients to stay up to date with the mod...
The Japan External Trade Organization (JETRO) is a non-profit organization that provides business support services to companies expanding to Japan. With the support of JETRO's dedicated staff, clients can incorporate their business; receive visa, immigration, and HR support; find dedicated office space; identify local government subsidies; get tailored market studies; and more.
Tapping into blockchain revolution early enough translates into a substantial business competitiveness advantage. Codete comprehensively develops custom, blockchain-based business solutions, founded on the most advanced cryptographic innovations, and striking a balance point between complexity of the technologies used in quickly-changing stack building, business impact, and cost-effectiveness. Codete researches and provides business consultancy in the field of single most thrilling innovative te...
CloudEXPO has been the M&A capital for Cloud companies for more than a decade with memorable acquisition news stories which came out of CloudEXPO expo floor. DevOpsSUMMIT New York faculty member Greg Bledsoe shared his views on IBM's Red Hat acquisition live from NASDAQ floor. Acquisition news was announced during CloudEXPO New York which took place November 12-13, 2019 in New York City.
With the introduction of IoT and Smart Living in every aspect of our lives, one question has become relevant: What are the security implications? To answer this, first we have to look and explore the security models of the technologies that IoT is founded upon. In his session at @ThingsExpo, Nevi Kaja, a Research Engineer at Ford Motor Company, discussed some of the security challenges of the IoT infrastructure and related how these aspects impact Smart Living. The material was delivered interac...
Atmosera delivers modern cloud services that maximize the advantages of cloud-based infrastructures. Offering private, hybrid, and public cloud solutions, Atmosera works closely with customers to engineer, deploy, and operate cloud architectures with advanced services that deliver strategic business outcomes. Atmosera's expertise simplifies the process of cloud transformation and our 20+ years of experience managing complex IT environments provides our customers with the confidence and trust tha...
Intel is an American multinational corporation and technology company headquartered in Santa Clara, California, in the Silicon Valley. It is the world's second largest and second highest valued semiconductor chip maker based on revenue after being overtaken by Samsung, and is the inventor of the x86 series of microprocessors, the processors found in most personal computers (PCs). Intel supplies processors for computer system manufacturers such as Apple, Lenovo, HP, and Dell. Intel also manufactu...
Darktrace is the world's leading AI company for cyber security. Created by mathematicians from the University of Cambridge, Darktrace's Enterprise Immune System is the first non-consumer application of machine learning to work at scale, across all network types, from physical, virtualized, and cloud, through to IoT and industrial control systems. Installed as a self-configuring cyber defense platform, Darktrace continuously learns what is ‘normal' for all devices and users, updating its understa...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...