Click here to close now.




















Welcome!

Linux Containers Authors: Elizabeth White, Liz McMillan, Pat Romanski, Esmeralda Swartz, Ruxit Blog

Related Topics: Linux Containers, Java IoT

Linux Containers: Article

Improving Swing Performance: JIT vs AOT Compilation

Linux native band plays fast

The JFC/Swing API, natively precompiled on Linux for the first time, delivers measurable improvement in Java GUI performance.

The Excelsior Engineering Team has ported Excelsior JET, a Java Virtual Machine (JVM) with an ahead-of-time compiler, to the Linux/x86 platform. As the JET JVM supports the entire J2SE platform API including the Java Foundation Classes (JFC/Swing), Excelsior engineers had an opportunity to evaluate the response time of natively compiled JFC/Swing on Linux. The results of the comparison with conventional, dynamically optimizing JVMs were encouraging: response time has improved by 40% or even doubled on some benchmarks. What's more important is that real-world Swing applications performed perceivably faster.

This article describes Excelsior JET JVM and JFCMark, free benchmark software by Excelsior that measures Swing-based GUI performance. Moreover, the authors share their technical experience in optimizing JFC/Swing and argue why ahead-of-time Java compilation has advantages over dynamic compilation for certain application types.

Two Recipes for Java

The definition of the term "virtual machine" has been revised in the past few years. Modern Java Virtual Machines are no longer just interpreters of the Java bytecode. High performance, state-of-the-art implementations are made up of optimizing compilers that translate bytecode instructions down to the native code that runs directly on the hardware. However, one technical decision distinguishes contemporary JVMs: what's the best time to run the performance engine, an optimizing native compiler? Two options exist: run it before or after the application starts.

Most JVMs initially interpret the program and then analyze how it runs by looking for hot spots, that is, frequently executed portions of bytecode. Hot spots are then compiled to optimized native code during program execution. This approach is called Just-In-Time (JIT) compilation. Other JVMs feature static native compilers similar to traditional C/C++ compilers, enabling developers to optimize their Java applications before execution. For Java, this old trick has a new name - Ahead-Of-Time (AOT) compilation. However, solely static compilation is not enough for Java compatibility. Remember that many Java applications use custom classloaders to load some components or plug-ins at runtime. To have the "J" in "JVM," such virtual machines must be supplied with an interpreter or JIT compiler to handle classes that could not be precompiled.

Either approach alone is not a silver bullet for Java performance. JIT-oriented JVMs can "see through" program execution, which may help them optimize hot code better than static compilers do. In return, AOT-oriented JVMs do not spend execution time on interpretation, profiling, and compilation, so optimized programs run fast from start-up. Not surprisingly, single-loop benchmarks fail to reveal a clear performance winner between the two approaches. Instead of carrying the "microbenchmark war" into the Linux camp, let's take a look at a vital example: the performance of Java GUI applications based on JFC/Swing.

Penguin-Driven JVMs

Both JIT and AOT-oriented implementations are available for Linux. The well-known Sun HotSpot Client and Server JVMs are powered by JIT compilers. BEA WebLogic JRockit and IBM Java 2 Runtime Environment also play in the JIT team. GCJ, the GNU compiler for Java, now supported by Red Hat, and Excelsior JET feature AOT compilation.

At the core of Excelsior JET is a static optimizing compiler that enables developers to transform their Java applications into native executables or shared libraries (.so) on a Linux flavor. The AOT compiler comes with a JET Control Panel (see Figure 1), a graphical front end that makes the product easy to learn and use. The command-line interface provides the integration of Excelsior JET into automated builds. The redistributable JET runtime system includes a JIT compiler to support Java dynamic classloading. Another graphical tool, JetPackII (see Figure 2), enables the rapid creation of installation packages for optimized applications. Excelsior JET supports all Java 2 platform packages up to version 1.4.2.

Another static Java compiler is GCJ, a member of the GNU Compiler Collection. Following the FSF philosophy, GCJ uses a clean-room, free implementation of the Java 2 Platform API. Although most packages are now supported, there are noticeable exceptions such as the Abstract Window Toolkit (AWT), Swing, and some of the APIs introduced to J2SE 1.4. Contributors to the GNU Classpath project are currently implementing the missing packages. The GNU Interpreter for Java complements GCJ to enable Java dynamic loading. The implementation of a JIT compiler is planned for the future.

Accelerated Swing Tempo

GUI response time is in the eye of the beholder. As a result, it's tough to obtain GUI performance scores. To address this problem, Excelsior has developed JFCMark, a free benchmark suite to measure the performance of the JFC/Swing API. The included tests are manipulating with frames, trees, and tables; switching look-and-feels; decoding and drawing images; displaying and scrolling HTML texts; and using Swing layout managers. JFCMark requires JVMs that support the Java 2 Platform at the level of J2SE 1.3, 1.4, or 1.5.

Each test performs its scenario in the main loop through a given number of iterations. This allows you to obtain performance scores in short- and long-running modes. Upon completion, these tests report performance measured in units specific to their specific scenarios, for instance, frames opened per second. When designing JFCMark, we paid close attention to benchmarking accuracy. For a particular configuration, every benchmark always performs the same number of operations independently of the JVM under test. This requirement is achieved through synchronous processing of Swing events, that is, a next event is sent only after the previous one is processed. Therefore, a possible difference in reported speed depends solely on the time of the benchmark execution.

Let's consider the performance of the Swing windowing system that provides operations with frames. We have used a part of JFCMark to test typical manipulations with frames such as opening/closing, dragging, and selecting. The testbed configuration was as follows.]

  • CPU: AMD Athlon running at 1,8 GHz
  • RAM: 512MB DDR SDRAM
  • Video: NVidia GeForce2 MX-200 at 1024x768x65536c
  • OS: Red Hat Linux release 8.0 (Psyche)
  • Linux Kernel: 2.4.18-14
We've run these benchmarks using a spectrum of JVMs available for Linux:
  • Excelsior JET 3.6 Professional Edition with JRE 1.4.2_04
  • Sun Java HotSpot Client VM 1.4.2_04
  • IBM J2RE 1.4.2 Classic with JIT enabled
  • Sun Java HotSpot Server VM 1.4.2_04
  • BEA WebLogic JRockit 8.1 with JRE 1.4.2_04
The server-oriented JVMs (Sun HotSpot Server and BEA WebLogic JRockit) are included for your reference. They're not expected to really shine in client-side application performance. GCJ is not included because it does not yet have support for JFC/Swing. To play fair, we provided results for both long- and short-running configuration of the benchmarks. Figures show the composite performance index in comparison with the reference implementation (Sun HotSpot Client VM). Longer bars mean better performance.

Figure 3 shows Swing performance scores for the long-playing version of JFCMark. For example, 600 frames are opened and closed by one of the tests. In this scenario, JIT-based JVMs have a chance to "warm up," that is, to optimize hot code for maximum speed. Note, however, that this level of performance may be reached only after doing a "good amount of mouse-clicking" in real-world Java GUI applications. Nevertheless, Excelsior JET still outperforms by 40% the first runner-up (HotSpot Client VM).

To see how Swing works on dynamic JVMs that have not been "warmed up" yet, look at Figure 4. It shows out-of-the-box performance scores for the short-running configuration. This case would correspond to the way Java GUI applications perform right after start-up. As can be seen, the JET-compiled Swing runs fast and it runs fast from the start. Other test participants work at least twice as slow for this scenario. Note that short-running benchmarks are mostly important for the client-side application's performance. For instance, if you start a GUI application and drag something with the mouse, you don't want to see it stumbling just because the JVM has not yet done its job. People talking about "snail Java" often ignore the fact that many JVMs take time to warm up. It's not an issue for server-side applications, which typically run for hours and days. However, the performance of client-side applications is most heavily impacted by the JVM warm-up cycle.

JEdit, a Practical Example

If you don't trust vendor benchmarks, check the results yourself. One of the samples that comes with Excelsior JET is a project for compiling jEdit, an open source, cross-platform text editor written in Java. jEdit has many advanced features that make text editing easier, such as syntax highlighting, auto indent, abbreviation expansion, registers, macros, regular expressions, and multiple file search/replace. It's a good example of a full-featured Swing-based application to evaluate GUI response time.

Behind the Performance Figures

An interesting question is why don't the JIT-powered JVMs hit the performance bar raised by Excelsior JET? Of course, aggressive static optimizations and the removal of bytecode interpretation make Swing work smoothly. However, it seems that the long-running mode of JFCMark should be comfortable for the JIT compilers. Where does the 40% performance win come from? We found the answer unexpectedly when we aimed at further improving Swing performance: the absence of hot methods.

Under the covers, JFC/Swing is quite a complex event-driven system implemented on top of AWT. The implementation consists of several hundred classes which, in turn, use a variety of other core classes. Many thousands of Java methods are executed when, for example, you open a Swing frame. When we obtained the Swing execution profile, it proved to be almost flat. Lots of methods were executed but each of them took hundredths of one percent in total execution time. Only a few methods took more than 1-2%. At this point, we encountered an interesting problem: what should we improve in the absence of clear performance bottlenecks? As you may have guessed, the same problem exists for profile-guided JIT compilers. Instead of a few hot spots to be aggressively optimized, there are plenty of "warm spots" that are left intact. The flat execution profile is an application-specific property that some JVMs cannot effectively manage to achieve top performance.

Conclusion

This article is not about fast and slow JVMs. Rather, it demonstrates that for some Java applications, a JVM with AOT compilation can work faster than JIT-based JVMs. The main lesson we have learned from this study is that one size does not fit all and JFC/Swing is not the only example. One way or another, the Java platform wins and we were happy to make Excelsior JET JVM available to Java/Linux developers.

Resources

  • Java Foundation Classes (JFC/Swing): http://java.sun.com/products/jfc/
  • Excelsior JET: www.excelsior-usa.com/jet.html
  • JFCMark: JFC/Swing benchmark with source code: www.excelsior-usa.com/jfcmark.html
  • Sun HotSpot JVMs: http://java.sun.com/j2se/1.4.2
  • IBM J2RE: www-106.ibm.com/developerworks/java/jdk/linux140/
  • BEA WebLogic JRockit: www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/jrockit
  • GCJ, the GNU compiler for Java: http://gcc.gnu.org/java/
  • GNU Classpath: www.gnu.org/software/classpath/
  • jEdit: www.jedit.org
  • More Stories By Vitaly Mikheev

    Vitaly Mikheev is the chief technology officer for Excelsior, LLC, a company focusing on design and development of optimizing compilers. Vitaly has been involved in software development since 1987 and focused on compiler construction technologies for the last decade. He started working with Java in 1998 as the architect of the Excelsior Java Virtual Machine. Before that, he worked on proprietary optimizing compilers for Nortel Networks. Vitaly is a member of ACM and a co-author of the patent on the garbage collector algorithm implemented in the Samsung's J2ME CDC virtual machine. He holds an MS in computer science from the Novosibirsk State University, Russia.

    Comments (5) View Comments

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    Most Recent Comments
    Blind Earl 11/08/04 09:04:35 AM EST

    Once I actually found the article it was an interesting read. However, this website looks *terrible*. When a column is only 11 characters wide due to advertising squishing it down, it is time to find some other magazine to read.

    the author 11/08/04 07:14:08 AM EST

    To angel'o'sphere:

    1)

    >>A VM based on a JIT compiler loads always only byte code
    >>and compiles the byte-code to native code on the fly
    >>depending on several algorithms/heuristics.
    >>A AOT compiler does JUST THE SAME on the first invocation
    >>of the byte code program, but it saves the generated
    >>native code to be available for later invocations of the
    >>same program. So for the later invocations, the
    >>compilation was ahead of time, not for the first one

    The thing you are talking about is called Caching JIT compilation (at least HotSpot and BEA engineers called it so when I talked with them at JavaOne 2004)

    Besides, Caching JIT compilation does not occur on the first invocation - it would take long long time and miss profile information useful for optimizations.

    2)

    >>The Excelsior JET is no AOT compiler but just a static
    >>compiler. However they seem to jump on the bandwagon
    >>of a new buzzword, because the term AOT is only used
    >>in academic circles currently

    visit http://gcc.gnu.org/java/ (GNU compiler for Java). It's described as an AOT compiler...

    3)

    >>The next flaw is this: they measure a GUI application
    >>over only 600 "loops". As the exact form of the loop
    >>is not published, I have the impression they made the
    >>loop in a way that a "standard" HotSpot JIT does
    >>predictable not even attempt to compile much of the
    >>covered code

    In this test, HotSpot shows 28,9 frames/sec for short-running configuration and 44,6 frames/sec for long-running one. It does not look like "not even attempt to compile much of the covered code". Increasing the number of iteration to open more frames does not improve the HotSpot results. BTW, did you ever open 600+ frames in a Java application?

    4)

    >>In the "benchmark" of the article,
    >>you neither have a loop (that one is in the external
    >>driver program hidden) nor stack samples which occur
    >>often enough to cause a JIT compilation.

    Check the source code of the benchmark. It includes the loop

    for(int j=0;j>IMHO: the Excelsior people tricked the HotSpot/JIT VMs
    >>in not doing their job, and thus you see the big
    >>performance gain.
    >> There are other tricks thinkable, e.g. not using
    >>the standard SWING library but a tweaked one,
    >>just remove some "synchronized" keywords if
    >> you are sure the benchmark does not need them,
    >> and voila ...

    The standard Swing library and the public JET version were used for benchmarking. As for "synchronized" keywords - some of them are *safely* removed by the JET compiler during the course of escape analysis. There is excellent literature about this optimization technique (for example, see ACM OOPSLA'99 - about 5 papers were devoted to it).

    Take care,

    --Vitaly

    P.S. JITs work well on servers and reusing the same machinery on the desktop is not always appropriate.

    angel'o'sphere 11/08/04 05:28:31 AM EST

    I don't like the article.
    For several reasons I think they cheated and they coin old terms into new terms for no reason (except publicity). E.g. they mix up AOT with static compilation.
    AOT is an extension of JIT compilation, and not a compilation done ahead of the first execution.
    A VM based on a JIT compiler loads always only byte code and compiles the byte-code to native code on the fly depending on several algorithms/heuristics.
    A AOT compiler does JUST THE SAME on the first invocation of the byte code program, but it saves the generated native code to be available for later invocations of the same program. So for the later invocations, the compilation was ahead of time, not for the first one.
    The Excelsior JET is no AOT compiler but just a static compiler. However they seem to jump on the bandwagon of a new buzzword, because the term AOT is only used in academic circles currently (besides that Java 5.0 tries to cash compile informations and even native code over invocations).
    The next flaw is this: they measure a GUI application over only 600 "loops". As the exact form of the loop is not published, I have the impression they made the loop in a way that a "standard" HotSpot JIT does predictable not even attempt to compile much of the covered code.
    To understand that you have to know how a HotSpot JIT works. Two "big" strategies are used: fiddling with loops, this is a short code fragment, inside of one method, consider it as a for loop or while loop. You can do different things with it ... not interesting here.
    The second big thing is call stack sampling. Suppose you have very often the method calls A, B, C on the call stack, the VM decides to check if anything can be inlined or if any of those methods is jitted.
    In the "benchmark" of the article, you neither have a loop (that one is in the external driver program hidden) nor stack samples which occur often enough to cause a JIT compilation.
    Excellent literature about JIT compilation and strategies can be found here: http://www.research.ibm.com/jalapeno/publication.h tml and here: http://www-124.ibm.com/developerworks/oss/jikesrvm /info/papers.shtml
    IMHO: the Excelsior people tricked the HotSpot/JIT VMs in not doing their job, and thus you see the big performance gain. There are other tricks thinkable, e.g. not using the standard SWING library but a tweaked one, just remove some "synchronized" keywords if you are sure the benchmark does not need them, and voila ...

    Seun Osewa 11/07/04 02:32:53 PM EST

    combining the two approaches will lead to overhead similar to a JIT approach (hence, there's nothing to be gained for a long-running program)

    RAMMS+EIN 11/06/04 05:40:50 AM EST

    Why compare JIT against AOT? Why not have both?

    AOT compilation makes for fast start up time and fast run time. JIT advocates claim that it can lead to better performance, as more optimizations can be performed with run-time information. So why not combine the two? Compile it before the first run, and further optimize it at run-time where appropriate. That way, you get the best of both worlds.

    @ThingsExpo Stories
    Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
    SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advanced analytics, and DevOps to advance innovation and increase agility. Specializing in designing, imple...
    As more and more data is generated from a variety of connected devices, the need to get insights from this data and predict future behavior and trends is increasingly essential for businesses. Real-time stream processing is needed in a variety of different industries such as Manufacturing, Oil and Gas, Automobile, Finance, Online Retail, Smart Grids, and Healthcare. Azure Stream Analytics is a fully managed distributed stream computation service that provides low latency, scalable processing of streaming data in the cloud with an enterprise grade SLA. It features built-in integration with Azur...
    SYS-CON Events announced today that Micron Technology, Inc., a global leader in advanced semiconductor systems, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Micron’s broad portfolio of high-performance memory technologies – including DRAM, NAND and NOR Flash – is the basis for solid state drives, modules, multichip packages and other system solutions. Backed by more than 35 years of technology leadership, Micron's memory solutions enable the world's most innovative computing, consumer,...
    Contrary to mainstream media attention, the multiple possibilities of how consumer IoT will transform our everyday lives aren’t the only angle of this headline-gaining trend. There’s a huge opportunity for “industrial IoT” and “Smart Cities” to impact the world in the same capacity – especially during critical situations. For example, a community water dam that needs to release water can leverage embedded critical communications logic to alert the appropriate individuals, on the right device, as soon as they are needed to take action.
    While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.
    With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts, GM of Platform at FinancialForce.com, will discuss the value of business applications on wearable ...
    As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
    WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
    Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
    The Internet of Things is in the early stages of mainstream deployment but it promises to unlock value and rapidly transform how organizations manage, operationalize, and monetize their assets. IoT is a complex structure of hardware, sensors, applications, analytics and devices that need to be able to communicate geographically and across all functions. Once the data is collected from numerous endpoints, the challenge then becomes converting it into actionable insight.
    Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Treloar, President and COO of Bebaio, will explore examples of brands transforming their businesses by t...
    With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and analyzed? As an area of investment, how might a retail company move towards an innovation methodolo...
    The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of IoT applications and projects. Business operations, IT, and data scientists need advanced analytics t...
    SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
    In his session at @ThingsExpo, Lee Williams, a producer of the first smartphones and tablets, will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater. He will explain how M2M controllers work through wirelessly connected remote controls; and specifically delve into a retrofit option that reverse-engineers control codes of existing conventional controller systems so they don't have to be replaced and are instantly converted to become smart, connected devices.
    SYS-CON Events announced today that IceWarp will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IceWarp, the leader of cloud and on-premise messaging, delivers secured email, chat, documents, conferencing and collaboration to today's mobile workforce, all in one unified interface
    Akana has announced the availability of the new Akana Healthcare Solution. The API-driven solution helps healthcare organizations accelerate their transition to being secure, digitally interoperable businesses. It leverages the Health Level Seven International Fast Healthcare Interoperability Resources (HL7 FHIR) standard to enable broader business use of medical data. Akana developed the Healthcare Solution in response to healthcare businesses that want to increase electronic, multi-device access to health records while reducing operating costs and complying with government regulations.
    For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
    The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.