Welcome!

Linux Containers Authors: Elizabeth White, Liz McMillan, XebiaLabs Blog, Pat Romanski, Gerardo A Dada

Related Topics: Java IoT, Weblogic, Linux Containers

Java IoT: Article

Java Basics: Introduction to Java Threads, Part 2

Internet Portals Like Yahoo, CNN, or Your Bank's Web Site Use Them

In the previous lesson www.sys-con.com/story/?storyid=46096&de=1 I've explained the basics of Java threads. This time we'll talk about using threads for creating a little more advanced programs.

I'm sure each of you have visited some of the major Internet portals like Yahoo, CNN or your bank's Web site. These portals usually display different types of information like News, Weather, Stock Market quotes, etc. Each of these info pieces appears on the screen instantaneously even though it's coming to the portal from different servers, i.e. the News server may be located in Washington and the stock market data come from New York (see Figure 1 below).

Let's say it takes 4 seconds to receive the news and 3 seconds to get the stock prices. If your program will do it in a sequence, it'll take you 7 seconds total, but why not do this in parallel and reduce the total time to 4 seconds? After all these servers have their own processors that can work in independently from each other! We are not going to discuss Web technologies here, but I'll show you how to spawn parallel processing using multi-threading, collect the returned data and display the results to the user in one shot.

Our program will consist of the following classes:

  • MyPortal that will spawn the threads and collect their returns in an ArrayList of strings. It'll print entire content of this array when all threads complete.
  • NewsServer that will run for 4 seconds and return a message "We have good and bad news";
  • StockServer that will run for 3 seconds and return a message "The stock market is on the rise!".
These threads do not contain any code that actually gets some news or market data. My goal is to show you how threads can communicate with other classes, and after this part works, it wont be difficult to replace the line that prints a static message with a method call that actually connects to the Internet and gets the data as it was explained in the lesson on getting data from the Internet:.

The class in Listing 1 creates and starts two threads (news and stocks) and goes to sleep for 10 seconds just to keep the program alive for a while. Please note that the class MyPortal also passes to each thread a reference to its instance so the threads know were to return the results. After each thread completes, it returns the result to MyPortal by calling its method submitResult(). Each of the resulting strings is being added to the ArrayList dataToDisplay, and when its size grows to two elements MyPortal prints the content of content the collection dataToDisplay. A little later I'll explain why such use of an ArrayList may not be the best solution for this example.

Listing 1. The source code of the class MyPortal


import java.util.ArrayList;
public class MyPortal {
	ArrayList dataToDisplay = new ArrayList();
    public static void main(String args[]){
    	MyPortal mp =new MyPortal();
    	// Spawn the threads and pass them the referennce
    	// to the instance of MyPortal
    	NewsServer myNews = new NewsServer(mp);
    	Thread newsThread = new Thread(myNews);

    	StockServer myStocks = new StockServer(mp);
    	Thread stockThread = new Thread(myStocks);

    	//Start the threads
    	newsThread.start();
    	stockThread.start();

    	try {
    		System.out.println("MyPortal is sleeping...!");
			Thread.sleep(10000); // wait for 10 sec 
		} catch (InterruptedException e) {
			e.printStackTrace();
		}

		System.out.println("Good bye!");
	}

    // Add the data returned by a thread to collection
    public void submitResult(String data){
    	dataToDisplay.add(data);

    	// Print the data if both threads have submitted the data
    	// (a buggy version)
    	if (dataToDisplay.size()==2){
        	System.out.println(dataToDisplay);
    	}
    }
}

The output of this program looks as follows:

MyPortal is sleeping...
[The stock market is on the rise!, We have good and bad news]
Good bye!

The first line will be printed almost immediately, the second line in 4 seconds and the third one in 10 seconds.

Listing 2. The source code of the class StockServer


public class StockServer implements Runnable {
    MyPortal papa;
    // Constructor
    StockServer(MyPortal parent){
       	papa=parent;
    }

    public void run() {
	// Sleep for 3 seconds to emulate some processing
	// and return a string with the market data to the parent
 	try {
		Thread.sleep(3000);
		papa.submitResult("The stock market is on the rise!");
	} catch (InterruptedException e) {
			e.printStackTrace();
	}
    }
}

Listing 3. The source code of the class NewsServer


public class NewsServer implements Runnable {
    MyPortal papa;

    // Constructor
    NewsServer(MyPortal parent){
       	papa=parent;
    }

	public void run() {
	// Sleep for 4 seconds to emulate some processing
	// and return a string with the news to the parent

		try {
			Thread.sleep(4000);
			papa.submitResult("We have  good and bad news");
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}
}

The thread classes from Listing 2 and Listing 3 store the references to the parent class MyPortal in the variable papa. Each of the threads just sleeps for a specified number of seconds, wakes up and passes an appropriate text to papa.

Please note, that even on a single processor's machine the total execution time of our example is just a little more than 4 seconds. The reason is that our threads where "sleeping in parallel" and did not compete for the processor's time. But if you replace the sleeping part with a loop that performs some calculations, the timing will be different on a single processor machine: the program will run about 7 seconds. If you have a dual processor machine, you'll cut the processing time to 4 seconds again.

Thread Synchronization. A Race Condition.

When you write a multithreaded application you should consider possibility of a so-called race condition. This is a situation when you may get unpredictable results because multiple threads access a resource (i.e. a variable) at the same time. In our example two threads are calling the same method submitResult() which in turn accesses the variable dataToDisplay to add some data to it and check the size of this collection. Imagine that two or more threads finish their work at the same time. Let's look at a possible sequence of events:

  1. The NewsServer calls the method submitResult(). The size of dataToDisplay is 0.
  2. The StockServer calls the method submitResult() a split second later. The size of dataToDisplay is 0.
  3. The NewsServer grabs a zero-element dataToDisplay and starts adding its string there as a first element.
  4. The StockServer grabs a zero-element dataToDisplay (because the NewsServer has not finished adding its first the element yet) and starts adding its string there as a first element.
  5. After both threads are done, the dataToDisplay may wind up with having one element because the first thread's string has been overwritten by the second one. In this is the case, the size of the dataToDisplay will remain one and MyPortal will never print the news and stock data.
Since the probability of this situation is really small, your program may work properly for years and all of a sudden produce unexpected results. Bugs like this one are not easy to discover.

To avoid race conditions, the code that needs to access a "sensitive" variable must be locked (become unavailable for other threads) for the time when one thread works with it. When the first thread completes, the lock is released and another thread can get a hold of this variable/resource. You can arrange such locking either by using a Java keyword synchronized, or by using Java objects that are internally synchronized.

In our portal example, you can simply use the class Vector instead of ArrayList:

Vector dataToDisplay = new Vector();

Vector objects are internally synchronized in Java, and the second thread won't be able to add a string to the dataToDisplay collection until the first thread is done. Obviously, there is a price to pay for this convenience: synchronized objects are a little bit slower than non-synchronized ones.

The other solution is to put an explicit lock for a piece of code that must be completed without any interruption by other threads. For example, if you'll add the keyword synchronized to the signature of the method submitResult(), the second thread will not be able to call this method, if the first one is still executing it:

public synchronized void submitResult(String data){?}

You can also say that a lock is placed on the entire method submitResult().

You should try to minimize the locking time to avoid slowing down your programs. Java allows you to synchronize just a small portion of the code, which is more preferable than synchronizing an entire method.:


    public void submitResult(String data){
 
    	synchronized (this){
    	  dataToDisplay.add(data);
    	}

    	if (dataToDisplay.size()==2){
        	System.out.println(dataToDisplay);
    	}
    }

When a synchronized block is executed, the object in parenthesis is locked and cannot be used by any other thread until the lock is released.

Each Java thread has its own memory and the JVM copies there variables from the main program memory. The keyword synchronize means to synch up the content of the main and thread's portions of memory. This ensures that each thread works with the most current value of the resource (in our case its dataToDisplay).

If you spot a group of Java programmers in a bar, after a couple of beers they may start using some mysterious words: monitor and mutex.

A monitor is just a piece of a synchronized code. We can say that one of our threads can enter a monitor and safely modify the variable dataToDisplay. While the first thread is working, another thread(s) may start waiting for this monitor.

Mutex means mutually exclusive, and this term also refers to the fact that threads may take turns accessing some program variable(s).

In this lesson you've learned one of the ways of treating more than one thread as a group, but this is not the only way. Java has a class java.lang.ThreadGroup that allows you to create and start a group of threads, control the threads within the group and check which threads are still active. You may also consider the method join() of the class Thread if one thread needs to wait for completion of another.

Threads can communicate with other Java objects using special methods wait(), notify() and notifyAll(), but this is going to be a topic of another lesson. Meanwhile, you can read more about threads in the Java Tutorial over here: http://java.sun.com/docs/books/tutorial/essential/threads/

More Stories By Yakov Fain

Yakov Fain is a Java Champion and a co-founder of the IT consultancy Farata Systems and the product company SuranceBay. He wrote a thousand blogs (http://yakovfain.com) and several books about software development. Yakov authored and co-authored such books as "Angular 2 Development with TypeScript", "Java 24-Hour Trainer", and "Enterprise Web Development". His Twitter tag is @yfain

Comments (3) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Slava Pestov 02/18/05 07:57:05 PM EST

Yakov, your last threads example has a race condition.

Consider this:

thread 1 executes: synchronized (this){ dataToDisplay.add(data); }.

then thread 2 executes: synchronized (this){ dataToDisplay.add(data); }.

then thread 1 executes: if (dataToDisplay.size()==2){ System.out.println(dataToDisplay); }

then thread 2 executes: if (dataToDisplay.size()==2){ System.out.println(dataToDisplay); }

That last System.out.println(dataToDisplay); executes twice, which is not what you intended.

Yakov Fain 02/04/05 11:41:26 AM EST

Yes, J2EE spec does not recommend it, but if you do it right everything works fine. Here's how this could be done

To control threads in a J2EE container use a thread pool (it's a singleton) and get threads from there. If you use J2SE 5.0, use the package java.util.concurrent (in particular, ThreadPoolExecutor). In J2SE 1.4 and below use an excellent concurrent package created by Doug Lea.

Disclaimer: It's just my personal opinion based on my prior experience with a pretty serious financial application. But I do not recommend you to violate J2EE spec.

Feldhacker 02/04/05 08:35:41 AM EST

Is a J2EE version of this example available? Since J2EE forbids explicit thread management, how would this be done on a web server?

@ThingsExpo Stories
"At ROHA we develop an app called Catcha. It was developed after we spent a year meeting with, talking to, interacting with senior citizens watching them use their smartphones and talking to them about how they use their smartphones so we could get to know their smartphone behavior," explained Dave Woods, Chief Innovation Officer at ROHA, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events has announced today that Roger Strukhoff has been named conference chair of Cloud Expo and @ThingsExpo 2017 New York. The 20th Cloud Expo and 7th @ThingsExpo will take place on June 6-8, 2017, at the Javits Center in New York City, NY. "The Internet of Things brings trillions of dollars of opportunity to developers and enterprise IT, no matter how you measure it," stated Roger Strukhoff. "More importantly, it leverages the power of devices and the Internet to enable us all to im...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
We are always online. We access our data, our finances, work, and various services on the Internet. But we live in a congested world of information in which the roads were built two decades ago. The quest for better, faster Internet routing has been around for a decade, but nobody solved this problem. We’ve seen band-aid approaches like CDNs that attack a niche's slice of static content part of the Internet, but that’s it. It does not address the dynamic services-based Internet of today. It does...
The many IoT deployments around the world are busy integrating smart devices and sensors into their enterprise IT infrastructures. Yet all of this technology – and there are an amazing number of choices – is of no use without the software to gather, communicate, and analyze the new data flows. Without software, there is no IT. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, Dave McCarthy, Director of Products at Bsquare Corporation; Alan Williamson, Principal...
"ReadyTalk is an audio and web video conferencing provider. We've really come to embrace WebRTC as the platform for our future of technology," explained Dan Cunningham, CTO of ReadyTalk, in this SYS-CON.tv interview at WebRTC Summit at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
Unsecured IoT devices were used to launch crippling DDOS attacks in October 2016, targeting services such as Twitter, Spotify, and GitHub. Subsequent testimony to Congress about potential attacks on office buildings, schools, and hospitals raised the possibility for the IoT to harm and even kill people. What should be done? Does the government need to intervene? This panel at @ThingExpo New York brings together leading IoT and security experts to discuss this very serious topic.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
An IoT product’s log files speak volumes about what’s happening with your products in the field, pinpointing current and potential issues, and enabling you to predict failures and save millions of dollars in inventory. But until recently, no one knew how to listen. In his session at @ThingsExpo, Dan Gettens, Chief Research Officer at OnProcess, discussed recent research by Massachusetts Institute of Technology and OnProcess Technology, where MIT created a new, breakthrough analytics model for ...
DevOps is being widely accepted (if not fully adopted) as essential in enterprise IT. But as Enterprise DevOps gains maturity, expands scope, and increases velocity, the need for data-driven decisions across teams becomes more acute. DevOps teams in any modern business must wrangle the ‘digital exhaust’ from the delivery toolchain, "pervasive" and "cognitive" computing, APIs and services, mobile devices and applications, the Internet of Things, and now even blockchain. In this power panel at @...
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smar...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place June 6-8, 2017, at the Javits Center in New York City, New York, is co-located with 20th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry p...
"We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Internet of @ThingsExpo has announced today that Chris Matthieu has been named tech chair of Internet of @ThingsExpo 2017 New York The 7th Internet of @ThingsExpo will take place on June 6-8, 2017, at the Javits Center in New York City, New York. Chris Matthieu is the co-founder and CTO of Octoblu, a revolutionary real-time IoT platform recently acquired by Citrix. Octoblu connects things, systems, people and clouds to a global mesh network allowing users to automate and control design flo...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.