Linux Containers Authors: Pat Romanski, Yeshim Deniz, Derek Weeks, Liz McMillan, Elizabeth White

Related Topics: Linux Containers

Linux Containers: Article

Deep into Blue Gene

Open technologies in a petaflops supercomputer

Blue Gene/L (BG/L) is a massively parallel supercomputer with low cost-to-performance ratios for speed, power, cooling, and floor space. It's designed and built by IBM in partnership with the Lawrence Livermore National Laboratory (LLNL) for the U.S. Department of Energy (DOE).

Using the latest hardware and software technologies, Blue Gene designers have set the grounds for a system that should smoothly scale to several petaflops. However, BG/L brings forth new challenges such as hardware failure management, efficient programming, and scalability of code.

From Quantum Chromodynamics to Protein Folding

The world of physics is a driving force in high performance computing. Applied physicists rely on supercomputers to simulate the evolution of dynamic systems that make up our universe. BG/L's story starts with a specific branch of physics called quantum chromodynamics (QCD), which deals with modeling the behavior of particles on subnuclear scales.

In 1998, a group of physicists working on QCD problems at the University of Columbia realized that clusters such as generic high-end servers interconnected by a fast switch were not efficient for QCD. So they designed and built a machine called QCDSP, which won them the Gordon Bell prize for the most effective supercomputer. QCDSP reached 600 GFlop/s (floating point operations per second) using 12,000 processors based on the Texas Instrument DSP C31 chip, with 2MB DRAM.

Their achievement led to the creation of a newer system named QCDOC (QCD On-a-Chip) in collaboration with IBM research in 2002. QCDOC is a 20 TFlop/s system based on 20,000 IBM processors, with 4MB EDRAM and external DDR/SDR SDRAM.

These massively parallel QCD machines consisted of thousands of low-end processors interconnected to form a multidimensional torus with nearest neighbor connections and global functions.

The successful work IBM research did with the University of Columbia on the QCD supercomputers influenced the design philosophy of the Blue Gene project, which IBM announced in 1999 as a multi-year plan to build a petaflop machine for calculations in the area of life sciences.

The BG/L Hardware

BG/L's hardware consists of 65,536 compute nodes, 1,024 I/O nodes, and five different networks. The densely packed system grows from two nodes per compute card to 16 compute cards per node board to 16 node boards per 512-node midplane, and to two midplanes in a 1024 rack (see Figure 1).

Each node or ASIC (Application-Specific Integrated Circuit) is based on the system-on-a-chip (SoC) technology, which integrates processors, memory, and communications logic onto the same chip.

The ASIC includes two 32-bit PowerPC 440 processing cores, each with two 64-bit FPUs (Floating-Point Units) (see Figure 2). Each core has a private 32KB instruction and 32KB data L1 cache, a 2KB L2 cache, and a shared 4MB L3 EDRAM cache.

The PowerPC 440 embedded microprocessor is not L1 cache coherent and therefore does not offer symmetric multiprocessing (SMP) support, but the L2 caches are coherent and act as a prefetch buffer for the L3 cache.

At a target speed of 700MHz, the peak performance of a node is 2.8 GFlop/s using one processing core, and 5.6 GFlop/s when both cores and FPUs in a chip are used. This gives the entire system a target peak performance of 180/360 TFLOPS.

The nodes consume low power by using these simple embedded microprocessors that have low clock cycles, and also require less power, cooling, and space.

Compute Nodes

The 65,536 compute nodes strictly handle computations: the image of the program to be run is loaded by a lightweight kernel into the node's memory, and full resource use is allocated to that single computational run.

In a normal operation, one processing core per node is used for computation while the other handles messaging; however, both cores can be used for computation if there is no need for a dedicated communication processor in the application.

The compute node operating system is a simple, single-user, and lightweight kernel. It provides a single, static, virtual address space to one running process and a user-level runtime library that provides access to the networks.

Because of its single-process nature, the kernel does not implement context switching nor demand paging, but it provides large pages and SMP support. This approach results in the application process using the system resources as fully as possible.

According to Dr. Manish Gupta, senior manager of Emerging System Software at IBM Research, "the Compute Node Kernel provides a subset of Linux services, but preserves the Linux interface for the services that it does support. By design, the kernel does not support services (that many HPC applications can live without) related to dynamic process creation/management and demand paging. There are several services, such as file I/O and sockets, which the Compute Node Kernel supports by function shipping those requests to the I/O node running Linux. This organization helps achieve scalability to tens of thousands of nodes, while preserving much of the familiar Linux functionality."

I/O Nodes

Each of the 1,024 I/O nodes manages communications for a group of 64 compute nodes.

They provide access to the filesystem for the application running on the compute nodes, as well as socket connections to processes in other systems.

When a compute process on a compute node performs an I/O operation such as a read/write to a file, that operation is forwarded over the network to the managing I/O node. That I/O node issues the operation on the filesystem and returns the result to the compute node.

The I/O node's hardware is the same ASIC as for the compute nodes, with added external memory and a gigabit Ethernet connection.

These nodes run an embedded Linux operating system and support the execution of multiple processes. They also perform process authentication and authorization, job accounting, and debugging.

Link Nodes

Signals that cross the midplane boundaries go through the link nodes, which provide two functions:
  • They boost the signal, improving its shape and amplitude.
  • They can also redirect the signal to different ports, effectively partitioning the BG/L system into logically separate systems. Spare midplanes can then be set up for backup or to run separate jobs independently.


BG/L has five communication networks (see Figure 3):
  1. A 64x32x32 three-dimensional torus for nearest-neighbor calculations on grids. This is where point-to-point message passing takes place between compute nodes (compute nodes only/serial communication).
  2. A global tree network for broadcast and reduction operations (all nodes/serial communication).
  3. A barrier network for synchronization (compute nodes only).
  4. Gigabit Ethernet to the JTAG (Joint Test Action Group) network for machine monitoring and control (all nodes).
  5. Gigabit Ethernet for a connection to other systems such as external front-end nodes where jobs can be submitted from (I/O nodes only).

Programming BG/L

There are several approaches to programming BG/L. They include the familiar parallel programming model of message passing using the MPI library in C, C++, or FORTRAN programs, as well as more recent global address space programming models such as Co-Array FORTRAN (CAF) and Unified Parallel C (UPC).

Also, mathematical libraries are being updated to take advantage of the BG/L architecture.

The Message Passing Interface (MPI)

The main parallel programming model for BG/L is message passing using MPI. The message passing model consists of compute nodes sharing data by sen-ding messages to each other over the network and is widely used in today's supercomputers.

Message passing on BG/L is supported through an implementation of the MPICH2 message-passing library that efficiently maps onto the torus and tree networks.

MPI is a familiar programming model for most researchers who write their programs in C, C++, or FORTRAN and provides a straightforward method for migrating existing application code to BG/L.

Co-Array FORTRAN (CAF) and Unified Parallel C (UPC)

CAF and UPC are explicitly parallel, global address space languages that incorporate the Single Program Multiple Data (SPMD) model into Fortran 90 and C, respectively.

For example, UPC adds the "forall" construct to the C language for distributing a for loop computation across nodes. This is in contrast to message passing where the programmer must specify what data is sent to which node.

Mathematical Libraries

Mathematical libraries are also being updated to take advantage of the BG/L architecture, such as exploiting the second core for compute-intensive kernels. Some of them include:
  • The Engineering Scientific Subroutine Library (ESSL), an IBM implementation of the Linear Algebra Package (LAPACK)
  • The Mathematical Acceleration Subsystem (MASS), an optimized mathematics library for reciprocals and square roots, in single and double precision mode
  • Fast Fourier Transforms (FFT) and 3D-FFT libraries, which are also being optimized for effective use of the BG/L FPUs
Higher-level application frameworks are also being developed, like the Blue Matter framework for biomolecular simulations that separates the complexities of parallel programming from the underlying science.

Running the Programs

BG/L runs one program at a time; the program image is loaded and run on the tens of thousands of compute nodes that are available.

There are two approaches to running programs on the compute nodes:

  • The coprocessor model: Each compute node runs an instance of the program (65,536 instances) with two threads on noncoherent shared memory and 256MB of memory.
  • The virtual node model: Both cores of each compute node separately load and run single threaded images of the application program (131,072 instances) while sharing the node's memory (128MB).

What Scientific Applications Will BG/L Run?

BG/L is not a general purpose machine. Its design is optimized to solve grid-based problems that are challenging in terms of the number of nearest neighbor communications that take place, as well as the amount of computational power required.

A good number of these interesting and computationally challenging problems can be found in high-energy physics, molecular dynamics, and astrophysics.

Protein folding is one of these key problems in the area of life sciences. Work on BG/L will help us understand and hopefully cure diseases such as Alzheimer's, cystic fibrosis, and Mad Cow by looking at the functions that folded/misfolded proteins play in their development.

Also on top of the list are simulations of the aging U.S. nuclear stockpile, which would mainly reduce the impractical need of testing nuclear weapons and ensure the safety and reliability of the nuclear supply.

Applications that BG/L does not optimally deal with include problems where little or no communication takes place between the compute nodes, and where distributed computing over the grid and farming can be used instead.

An Open System

Open technologies play a major role in the BG/L supercomputer as it relies at the software level on key open source software. Also, as the system was being built, BG/L simulations were being regularly run on Linux machines.

Linux, GNU, and MPI

Supercomputers are moving away from closed source operating systems to Linux and open source software.

This is the case with BG/L where the I/O and external front-end nodes run Linux, and the compute nodes run a kernel that is inspired by Linux. The choice to use Linux comes mainly from the familiarity of the scientific community with the OS, its libraries, and its interfaces.

This eases the task of programmers getting used to a new system, and brings the rich and widespread open source model of software development to scientists and programmers of BG/L.

As indicated by Dr. Gupta, "We wanted to provide a familiar development environment to the users so that they could benefit from the enormous computational power of BG/L without having to learn a new way of working with supercomputers. Using an open source environment also makes it easier to reach out to the community and foster collaborations."

Other fundamental open source software components include the BSD-licensed implementation of MPI, MPICH2, which is the main model of programming BG/L.

Open Hardware

IBM has made the PowerPC architec-ture an open standard. It has allowed third-party manufacturers to build the chips and has made the design tools available.

According to Dr. Alan Gara, chief architect of Blue Gene, IBM Research, "The Blue Gene/L machine was built on the premise that the key to reaching the highest levels of performance is to use 'open' hardware technologies along with commodities in a highly integrated, low-power system."

Open hardware is proving beneficial in many ways, where it "allows customers to customize their hardware in a manner best suited to their needs such as was done for the Blue Gene/L supercomputer."

Customers can "achieve custom solutions for complex problems at a fraction of the investment and cost."

Also, "By using the 'Open' Power processor cores, the design team is able to focus on other aspects of the design, which can deliver performance. For Blue Gene/L this focus was put on the network support, which is important for a supercomputer."

Simulating BG/L on Linux Clusters

BGLsim is a parallel application that runs on Linux clusters to simulate the BG/L system.

It executes the full BG/L hardware instruction set and accurately models all the system memory and communication devices.

The simulator was used to develop and test the system software, including the compute and I/O node kernels, device drivers, MPI, compilers, Math libraries, and benchmarking suites.

This allowed for the rapid development and testing of the BG/L software even before the hardware arrived, which greatly contributed to accelerating the BG/L development process.

Challenges Ahead

The BG/L project presents challenges to the designers and programmers of the system at several levels.

One of them is handling the failure rate of the hardware components: having tens of thousands of processors dictates that the mean time between failures (MTBF) is relatively high. Checkpointing is being used as a solution at the software level. It consists of saving the state of the system at different times during a program run, so that only part of the computation can be restarted in case of failure.

Writing parallel code is still not simple and straightforward enough for most scientists and programmers, but global address space languages might make that job easier.

Getting the code to easily map well onto the hardware and scale up efficiently to such a large number of processors may also present several difficulties.

Onwards to Petaflops Computing

So far the BG/L system has been successful in achieving its design goals in terms of low-power processors, high-density packaging, high scalability in architecture, and encouraging performance results. The complete system should be ready in early 2005.

Crucial challenges in performance, scalability, and reliability need to be met so that Blue Gene/P, the petaflops generation machine that scales on the BG/L architecture with newer processors and more memory, becomes a reality toward the end of 2006.

Meanwhile, open source technologies, with Linux at their forefront, have proved themselves vital in the step toward building petaflops supercomputers.


  • QCDSP/QCDOC: http://phys.columbia.edu/~cqft/
  • IBM Blue Gene: www.research.ibm.com/bluegene/
  • The MPICH and MPICH2: www-unix.mcs.anl.gov/mpi/mpich
  • CO-Array FORTRAN: www.co-array.org
  • UPC Community: http://upc.gwu.edu/
  • Open Power Architecture: www.power.org

    Thanks to Adam Emery, Manish Gupta, and Alan Gara from IBM Research for their feedback and support.

  • More Stories By Joy Khoriaty

    Joy Khoriaty is studying for his MSc. in High Performance Computing at
    the Edinburgh Parallel Computing Centre (EPCC), at the University of
    Edinburgh, Scotland. You can reach him at [email protected]

    Comments (0)

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

    @ThingsExpo Stories
    SYS-CON Events announced today that MobiDev, a client-oriented software development company, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. MobiDev is a software company that develops and delivers turn-key mobile apps, websites, web services, and complex software systems for startups and enterprises. Since 2009 it has grown from a small group of passionate engineers and business...
    SYS-CON Events announced today that GrapeUp, the leading provider of rapid product development at the speed of business, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Grape Up is a software company, specialized in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market acr...
    SYS-CON Events announced today that Ayehu will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on October 31 - November 2, 2017 at the Santa Clara Convention Center in Santa Clara California. Ayehu provides IT Process Automation & Orchestration solutions for IT and Security professionals to identify and resolve critical incidents and enable rapid containment, eradication, and recovery from cyber security breaches. Ayehu provides customers greater control over IT infras...
    The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to...
    In this presentation, Striim CTO and founder Steve Wilkes will discuss practical strategies for counteracting fraud and cyberattacks by leveraging real-time streaming analytics. In his session at @ThingsExpo, Steve Wilkes, Founder and Chief Technology Officer at Striim, will provide a detailed look into leveraging streaming data management to correlate events in real time, and identify potential breaches across IoT and non-IoT systems throughout the enterprise. Strategies for processing massive ...
    SYS-CON Events announced today that Cloud Academy named "Bronze Sponsor" of 21st International Cloud Expo which will take place October 31 - November 2, 2017 at the Santa Clara Convention Center in Santa Clara, CA. Cloud Academy is the industry’s most innovative, vendor-neutral cloud technology training platform. Cloud Academy provides continuous learning solutions for individuals and enterprise teams for Amazon Web Services, Microsoft Azure, Google Cloud Platform, and the most popular cloud com...
    In his session at Cloud Expo, Alan Winters, an entertainment executive/TV producer turned serial entrepreneur, presented a success story of an entrepreneur who has both suffered through and benefited from offshore development across multiple businesses: The smart choice, or how to select the right offshore development partner Warning signs, or how to minimize chances of making the wrong choice Collaboration, or how to establish the most effective work processes Budget control, or how to ma...
    SYS-CON Events announced today that Enzu will exhibit at SYS-CON's 21st Int\ernational Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Enzu’s mission is to be the leading provider of enterprise cloud solutions worldwide. Enzu enables online businesses to use its IT infrastructure to their competitive advantage. By offering a suite of proven hosting and management services, Enzu wants companies to focus on the core of their ...
    With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend 21st Cloud Expo October 31 - November 2, 2017, at the Santa Clara Convention Center, CA, and June 12-14, 2018, at the Javits Center in New York City, NY, and learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
    SYS-CON Events announced today that IBM has been named “Diamond Sponsor” of SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California.
    We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA
    SYS-CON Events announced today that CA Technologies has been named "Platinum Sponsor" of SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business - from apparel to energy - is being rewritten by software. From planning to development to management to security, CA creates software that fuels transformation for companies in the applic...
    Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
    Multiple data types are pouring into IoT deployments. Data is coming in small packages as well as enormous files and data streams of many sizes. Widespread use of mobile devices adds to the total. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists looked at the tools and environments that are being put to use in IoT deployments, as well as the team skills a modern enterprise IT shop needs to keep things running, get a handle on all this data, and deliver...
    In his session at @ThingsExpo, Eric Lachapelle, CEO of the Professional Evaluation and Certification Board (PECB), provided an overview of various initiatives to certify the security of connected devices and future trends in ensuring public trust of IoT. Eric Lachapelle is the Chief Executive Officer of the Professional Evaluation and Certification Board (PECB), an international certification body. His role is to help companies and individuals to achieve professional, accredited and worldwide re...
    With the introduction of IoT and Smart Living in every aspect of our lives, one question has become relevant: What are the security implications? To answer this, first we have to look and explore the security models of the technologies that IoT is founded upon. In his session at @ThingsExpo, Nevi Kaja, a Research Engineer at Ford Motor Company, discussed some of the security challenges of the IoT infrastructure and related how these aspects impact Smart Living. The material was delivered interac...
    IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...
    "When we talk about cloud without compromise what we're talking about is that when people think about 'I need the flexibility of the cloud' - it's the ability to create applications and run them in a cloud environment that's far more flexible,” explained Matthew Finnie, CTO of Interoute, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
    The Internet giants are fully embracing AI. All the services they offer to their customers are aimed at drawing a map of the world with the data they get. The AIs from these companies are used to build disruptive approaches that cannot be used by established enterprises, which are threatened by these disruptions. However, most leaders underestimate the effect this will have on their businesses. In his session at 21st Cloud Expo, Rene Buest, Director Market Research & Technology Evangelism at Ara...
    No hype cycles or predictions of zillions of things here. IoT is big. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, Associate Partner at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He discussed the evaluation of communication standards and IoT messaging protocols, data analytics considerations, edge-to-cloud tec...