Click here to close now.

Welcome!

Linux Authors: Carmen Gonzalez, XebiaLabs Blog, Trevor Parsons, Jon McNeill, Roger Strukhoff

Related Topics: Linux

Linux: Article

Stateless Network Auto Configuration With IPv6

A plug-and-play network connection

IPv6 can be used to automatically connect a host to a network using stateless auto-configuration, doing away with the need for any IP addressing support like a DHCP server.

In an IPv6 network, the IPv6 protocol includes information that can directly configure a host. With IPv4 you either have to manually configure each host or rely on a DHCP server to provide configuration information. With IPv6, configuration information is integrated into the Internet protocol directly. IPv6 autoconfiguration capabilities are known as stateless, meaning that it can directly configure a host without the recourse to an external server. Alternatively, DHCP is stateful, where the host relies on an external DHCP server to provide configuration information. Stateless autoconfiguration has the advantage of hosts not having to rely on a DHCP server to maintain connections to a network. Networks could even become mobile, hooking into one subnet or another, automatically generating addresses as needed. Hosts are no longer tied to a particular DHCP server. Many ISPs still use the IPv4 protocol and to use IPv6 with these networks requires special services such as 4to6. This is beyond the scope of this article.

IPv6 Addressing
IPv6 introduces major changes into the format and method of addressing systems under the Internet Protocol. There are several different kinds of addressing with different fields for the network segment. The host segment has been expanded to a 64-bit address, allowing direct addressing for a far larger number of systems. Each address begins with a type field specifying the kind of address, which will then determine how its network segment is organized. These changes are designed not only to expand the address space but to also provide greater control over transmissions at the address level.

An IPv6 address consists of 128 bits, up from the 32 bits used in IPv4 addresses. The first 64 bits are used for network addressing, of which the first few bits are reserved for indicating the address type. The last 64 bits are used for the interface address, known as the interface identifier field. An IPv6 address is written as eight segments representing 16 bits each (128 bits total). To more easily represent 16-bit binary numbers, hexadecimal numbers are used.

In IPv6, addressing is controlled by the format prefix in the network part of the address that operates as a kind of address type. The format prefix is the first field of the IP address. The three kinds of single destination network addresses are global, link-local, and site-local. Global addresses can be sent across the Internet and have a format prefix that begins with 3. Link-local addresses are used for physically connected systems on a local network and use the format prefix FE80. Site-local can be used for any hosts on a private network and use the format prefix FEC0. Site-local addresses operate similar to IPv4 private addresses.

In the following example the first four segments represent the network part of the IPv6 site-local address, and the following four segments represent the interface (host) address:

FEC0:0000:0000:0000:0008:0800:200C:417A

Segments with all zeros can be reduced to a single zero.

FEC0:0:0:0:8:800:200C:417A

Sequences of zeros can use a shorthand symbol consisting of a double colon (::).

FEC0::8:800:200C:417A

The identifier part of the IPv6 address takes up the second 64 bits, consisting of four segments containing four hexadecimal numbers. This is the address used to identify the host. The interface ID is a 64-bit (four-segment) Extended Unique Identifier (EUI-64) generated from a network device's Media Access Control (MAC) address. There are security concerns that the identifier based directly on a constant MAC address could be used to track a host. As an alternative, a method of generating randomized and temporary identifiers has been proposed.

Generating the Link-Local Address for Local Networks
To auto-configure hosts on a local network, IPv6 makes use of each network device's hardware MAC address. This address is used to generate a temporary address with which the host can be queried and configured. Be sure that IPv6 addressing is first enabled on your host's network device. This is an option in the device's General panel in the system-config-network on Fedora Core 4.

The MAC address is used to create a link-local address, one with a link-local prefix, FE80::0, followed by an interface identifier. The link-local prefix is used for physically connected hosts such as those on a small local network.

A uniqueness test is then performed on the generated address. Using the Neighbor Discovery Protocol (NDP), other hosts on the network are checked to see if another host is already using the generated link-local address. If no other host is using the address, the address is assigned for that local network. At this point the host has only a local address that's valid within the local physical network. Link-local addresses cannot be routed to a larger network.

Generating the Full Address: Router Advertisements
Once the link-local address has been determined, the router for the network is then queried for additional configuration information. In the case of stateless addresses, the router provides the network address, such as the network's Internet address. This address is then added to the local address, replacing the original link-local prefix, giving either a complete global Internet address or, in the case of private networks, site-local addresses. Routers will routinely advertise this address information, though it can also be specifically requested. The NDP protocol is used to query and send the information using ICMPv6 packets. Before the address is officially assigned, a duplicate address detection procedure checks to see if the address is already in use. The process depends on the router's providing the appropriate addressing information in the form of router advertisements.

Figure 1 shows a network that is configured with stateless address autoconfiguration. First, each host determines its interface identifier using its own MAC hardware address. This is used to create a temporary link-local address for each host using the FE08::0 prefix. This allows initial communication with the network's router. The router then uses its network prefix to create full Internet addresses, replacing the link-local prefix.

Addressing for Private Networks
In a private network, your router would use a site-local address for the network prefix, such as FEC0::0. This network prefix would then be combined with the host's identifier to generate a full IPv6 private address (see Figure 2). In a private network, the address of the first host as shown in Figure 2 is:

FEC0:0:0:0:FEDC:BA98:7654:3210

Router Renumbering
With IPv6, routers have the ability to renumber the addresses on their networks by changing the network prefix. Renumbering is carried out through the Router Renumbering Protocol, RR. Renumbering is often used when a network changes ISP providers, requiring that the network address for all hosts be changed (see Figure 3). It can also be used for mobile networks where a network can be plugged into different larger networks, renumbering each time.

With renumbering, routers place a time limit on addresses, similar to the lease time in DHCP, by specifying an expiration limit for the network prefix when the address is generated. To ease transition, interfaces still keep their old addresses as deprecated addresses, while the new ones are first being used. The new ones will be the preferred addresses used for any new connections while deprecated ones are used for older connections. In effect a host could have two addresses, one deprecated and one preferred. This regeneration of addresses effectively renumbers the hosts.

Linux As a IPv6 router: radvd
A Linux system that operates as a router uses the radvd Router Advertisement Daemon to advertise addresses, specifying a network prefix in the /etc/radvd.conf file. The radvd daemon will detect router network address requests from hosts, known as router solicitations, and provide them with a network address using a router advertisement. These router advertisements will also be broadcast to provide the network address to those hosts that do not send in requests. For radvd to work you will have to turn on IPv6 forwarding. Use sysctl and set net.ipv6.conf.all.forwarding to 1. To start up the radvd daemon, use the radvd start-up script. To check the router addresses radvd is sending, you can use radvdump.

You will have to configure the radvd daemon yourself, specifying the network address to broadcast. Configuration though is very simple as the full address will be automatically generated using the host's hardware address. A configuration consists of interface entries that in turn list interface options, prefix definitions and options, along with router definitions if needed. The configuration is placed in the /etc/radvd.conf file, which would look something like this:


interface eth0 {
AdvSendAdvert on;
prefix fec0:0:0:0::/64
{
AdvOnLink on;
AdvAutonomous on;
};
};
This assumes one interface is used for the local network, eth0. This interface configuration lists an interface option (AdvSendAdvert) and a prefix definition along with two prefix options (AdvOnLink and AdvAutonomous). To specify prefix options for a specific prefix, add them within parentheses following the prefix definition. The prefix definition specifies your IPv6 network address. If a local area network has its own network address, you will need to provide its IPv6 network prefix address. For a private network, like a home network, you can use the silte-local IPv6 prefix that operates like the IPv4 private network addresses, 192.168.0. The above example uses a site-local address that is used for private IPv6 networks, fec0:0:0:0::, which has a length of 64 bits.

The AdvSendAdvert interface option turns on network address advertising to the hosts. The AdvAutonomous network prefix option provides automatic address configuration, and AdvOnLink simply means that host requests can be received on the specified network interface.

A second network interface is then used to connect the Linux system to an ISP or larger network. If the ISP supports IPv6, this is simply a matter of sending a router solicitation to the ISP router. This would automatically generate your Internet address using the hardware address of the network interface used to connect to the Internet and the ISP router's advertised network address. In Figure 2, a local network, eth0 network interface, connects to the local network, whereas eth1 connects to the Internet.

Conclusion
Stateless IPv6 autoconfiguration requires no independent server or source to connect to a network. It is a direct plug-and-play operation, where the hardware network interfaces and routers can directly determine the correct addresses. DCHP, currently in wide use, is an older method that requires a separate server to manage and assign all addresses. Should the DHCP server ever fail, hosts could not connect. With the IPv6 protocol in place, your address is automatically generated using your network hardware MAC interface and the ISP router's network address. Home networks can use the same structure to automatically connect any network device to your router. No local DHCP server has to be maintained. To use a Linux system as an IPv6 router, you configure and run the radvd daemon. This daemon uses a very simple configuration to automatically configure the IPv6 network addresses for your local hosts.

References

More Stories By Richard Petersen

Richard Petersen holds a M.L.I.S. in Library and Information Studies. He
currently teaches Unix and C/C++ courses at the University of California, Berkeley.

Comments (3) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Ned 09/06/07 12:08:53 PM EDT

Your stupid popup ads render your site worthless; I will not come back.

news desk 12/27/05 11:11:19 PM EST

IPv6 can be used to automatically connect a host to a network using stateless auto-configuration, doing away with the need for any IP addressing support like a DHCP server. In an IPv6 network, the IPv6 protocol includes information that can directly configure a host.

news desk 12/27/05 10:58:59 PM EST

IPv6 can be used to automatically connect a host to a network using stateless auto-configuration, doing away with the need for any IP addressing support like a DHCP server. In an IPv6 network, the IPv6 protocol includes information that can directly configure a host.

@ThingsExpo Stories
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
The Internet of Things (IoT) is rapidly in the process of breaking from its heretofore relatively obscure enterprise applications (such as plant floor control and supply chain management) and going mainstream into the consumer space. More and more creative folks are interconnecting everyday products such as household items, mobile devices, appliances and cars, and unleashing new and imaginative scenarios. We are seeing a lot of excitement around applications in home automation, personal fitness, and in-car entertainment and this excitement will bleed into other areas. On the commercial side, m...
Advanced Persistent Threats (APTs) are increasing at an unprecedented rate. The threat landscape of today is drastically different than just a few years ago. Attacks are much more organized and sophisticated. They are harder to detect and even harder to anticipate. In the foreseeable future it's going to get a whole lot harder. Everything you know today will change. Keeping up with this changing landscape is already a daunting task. Your organization needs to use the latest tools, methods and expertise to guard against those threats. But will that be enough? In the foreseeable future attacks w...
Disruptive macro trends in technology are impacting and dramatically changing the "art of the possible" relative to supply chain management practices through the innovative use of IoT, cloud, machine learning and Big Data to enable connected ecosystems of engagement. Enterprise informatics can now move beyond point solutions that merely monitor the past and implement integrated enterprise fabrics that enable end-to-end supply chain visibility to improve customer service delivery and optimize supplier management. Learn about enterprise architecture strategies for designing connected systems tha...
Dale Kim is the Director of Industry Solutions at MapR. His background includes a variety of technical and management roles at information technology companies. While his experience includes work with relational databases, much of his career pertains to non-relational data in the areas of search, content management, and NoSQL, and includes senior roles in technical marketing, sales engineering, and support engineering. Dale holds an MBA from Santa Clara University, and a BA in Computer Science from the University of California, Berkeley.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
The cloud is now a fact of life but generating recurring revenues that are driven by solutions and services on a consumption model have been hard to implement, until now. In their session at 16th Cloud Expo, Ermanno Bonifazi, CEO & Founder of Solgenia, and Ian Khan, Global Strategic Positioning & Brand Manager at Solgenia, will discuss how a top European telco has leveraged the innovative recurring revenue generating capability of the consumption cloud to enable a unique cloud monetization model to drive results.
As organizations shift toward IT-as-a-service models, the need for managing and protecting data residing across physical, virtual, and now cloud environments grows with it. CommVault can ensure protection &E-Discovery of your data – whether in a private cloud, a Service Provider delivered public cloud, or a hybrid cloud environment – across the heterogeneous enterprise. In his session at 16th Cloud Expo, Randy De Meno, Chief Technologist - Windows Products and Microsoft Partnerships, will discuss how to cut costs, scale easily, and unleash insight with CommVault Simpana software, the only si...
Docker is an excellent platform for organizations interested in running microservices. It offers portability and consistency between development and production environments, quick provisioning times, and a simple way to isolate services. In his session at DevOps Summit at 16th Cloud Expo, Shannon Williams, co-founder of Rancher Labs, will walk through these and other benefits of using Docker to run microservices, and provide an overview of RancherOS, a minimalist distribution of Linux designed expressly to run Docker. He will also discuss Rancher, an orchestration and service discovery platf...
Analytics is the foundation of smart data and now, with the ability to run Hadoop directly on smart storage systems like Cloudian HyperStore, enterprises will gain huge business advantages in terms of scalability, efficiency and cost savings as they move closer to realizing the potential of the Internet of Things. In his session at 16th Cloud Expo, Paul Turner, technology evangelist and CMO at Cloudian, Inc., will discuss the revolutionary notion that the storage world is transitioning from mere Big Data to smart data. He will argue that today’s hybrid cloud storage solutions, with commodity...
Cloud data governance was previously an avoided function when cloud deployments were relatively small. With the rapid adoption in public cloud – both rogue and sanctioned, it’s not uncommon to find regulated data dumped into public cloud and unprotected. This is why enterprises and cloud providers alike need to embrace a cloud data governance function and map policies, processes and technology controls accordingly. In her session at 15th Cloud Expo, Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems, will focus on how to set up a cloud data governance program and s...
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.
Every innovation or invention was originally a daydream. You like to imagine a “what-if” scenario. And with all the attention being paid to the so-called Internet of Things (IoT) you don’t have to stretch the imagination too much to see how this may impact commercial and homeowners insurance. We’re beyond the point of accepting this as a leap of faith. The groundwork is laid. Now it’s just a matter of time. We can thank the inventors of smart thermostats for developing a practical business application that everyone can relate to. Gone are the salad days of smart home apps, the early chalkb...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.