Click here to close now.

Welcome!

Linux Authors: Jason Bloomberg, Lori MacVittie, Elizabeth White, Esmeralda Swartz, Carmen Gonzalez

Related Topics: Linux

Linux: Article

Understanding the Linux Kernel (Part 1 of 3)

Part 1 of 3

Like any time-sharing system, Linux achieves the magical effect of an apparent simultaneous execution of multiple processes by switching from one process to another in a very short time frame. This article deals with scheduling, which is concerned with when to switch and which process to choose.

The article consists of three parts. Part One introduces the choices made by Linux to schedule processes in the abstract. Part Two discusses the data structures used to implement scheduling and the corresponding algorithm. Finally, Part Three describes the system calls that affect process scheduling.

Scheduling Policy
The scheduling algorithm of traditional Unix operating systems must fulfill several conflicting objectives: fast process response time, good throughput for background jobs, avoidance of process starvation, reconciliation of the needs of low- and high-priority processes, and so on. The set of rules used to determine when and how selecting a new process to run is called scheduling policy.

Linux scheduling is based on timing measurements: several processes are allowed to run "concurrently," which means that the CPU time is roughly divided into "slices," one for each runnable process. Of course, a single processor can run only one process at any given instant. If a currently running process is not terminated when its time slice or quantum expires, a process switch may take place. Time-sharing relies on timer interrupts and is thus transparent to processes. No additional code needs to be inserted in the programs in order to ensure CPU time-sharing.

The scheduling policy is also based on ranking processes according to their priority. Complicated algorithms are sometimes used to derive the current priority of a process, but the end result is the same: each process is associated with a value that denotes how appropriate it is to be assigned to the CPU.

In Linux, process priority is dynamic. The scheduler keeps track of what processes are doing and adjusts their priorities periodically; in this way, processes that have been denied the use of the CPU for a long time interval are boosted by dynamically increasing their priority. Correspondingly, processes running for a long time are penalized by decreasing their priority.

When speaking about scheduling, processes are traditionally classified as "I/O-bound" or "CPU-bound." The former make heavy use of I/O devices and spend much time waiting for I/O operations to complete; the latter are number-crunching applications that require a lot of CPU time. An alternative classification distinguishes three classes of processes:

Interactive processes
These interact constantly with their users, and therefore spend a lot of time waiting for keypresses and mouse operations. When input is received, the process must be woken up quickly, or the user will find the system to be unresponsive. Typically, the average delay must fall between 50 and 150 ms. The variance of such delay must also be bounded, or the user will find the system to be erratic. Typical interactive programs are command shells, text editors, and graphical applications.

Batch processes
These do not need user interaction, and hence they often run in the background. Since such processes do not need to be very responsive, they are often penalized by the scheduler. Typical batch programs are programming language compilers, database search engines, and scientific computations.

Real-time processes
These have very strong scheduling requirements. Such processes should never be blocked by lower-priority processes, they should have a short response time and, most important, such response time should have a minimum variance. Typical real-time programs are video and sound applications, robot controllers, and programs that collect data from physical sensors.

The two classifications we just offered are somewhat independent. For instance, a batch process can be either I/O-bound (e.g., a database server) or CPU-bound (e.g., an image-rendering program). While in Linux real-time programs are explicitly recognized as such by the scheduling algorithm, there is no way to distinguish between interactive and batch programs. In order to offer a good response time to interactive applications, Linux (like all Unix kernels) implicitly favors I/O-bound processes over CPU-bound ones.

Programmers may change the scheduling parameters by means of the system calls illustrated in Table 1. More details will be given in Part Three.

Table 1: System Calls Related to Scheduling
System Call Description
nice( ) Change the priority of a conventional process.
getpriority( ) Get the maximum priority of a group of conventional processes.
setpriority( ) Set the priority of a group of conventional processes.
sched_getscheduler( ) Get the scheduling policy of a process.
sched_setscheduler( ) Set the scheduling policy and priority of a process.
sched_getparam( ) Get the scheduling priority of a process.
sched_setparam( ) Set the priority of a process.
sched_yield( ) Relinquish the processor voluntarily without blocking.
sched_get_ priority_min( ) Get the minimum priority value for a policy.
sched_get_ priority_max( ) Get the maximum priority value for a policy.
sched_rr_get_interval( ) Get the time quantum value for the Round Robin policy.

Most system calls shown in the table apply to real-time processes, thus allowing users to develop real-time applications. However, Linux does not support the most demanding real-time applications because its kernel is nonpreemptive.

Process Preemption
Linux processes are preemptive. If a process enters the TASK_RUNNING state, the kernel checks whether its dynamic priority is greater than the priority of the currently running process. If it is, the execution of current is interrupted and the scheduler is invoked to select another process to run (usually the process that just became runnable). Of course, a process may also be preempted when its time quantum expires. When this occurs, the need_resched field of the current process is set, so the scheduler is invoked when the timer interrupt handler terminates.

For instance, let us consider a scenario in which only two programs--a text editor and a compiler--are being executed. The text editor is an interactive program, therefore it has a higher dynamic priority than the compiler. Nevertheless, it is often suspended, since the user alternates between pauses for think time and data entry; moreover, the average delay between two keypresses is relatively long. However, as soon as the user presses a key, an interrupt is raised, and the kernel wakes up the text editor process. The kernel also determines that the dynamic priority of the editor is higher than the priority of current, the currently running process (that is, the compiler), and hence it sets the need_resched field of this process, thus forcing the scheduler to be activated when the kernel finishes handling the interrupt. The scheduler selects the editor and performs a task switch; as a result, the execution of the editor is resumed very quickly and the character typed by the user is echoed to the screen. When the character has been processed, the text editor process suspends itself waiting for another keypress, and the compiler process can resume its execution. Be aware that a preempted process is not suspended, since it remains in the TASK_RUNNING state; it simply no longer uses the CPU.

Some real-time operating systems feature preemptive kernels, which means that a process running in Kernel Mode can be interrupted after any instruction, just as it can in User Mode. The Linux kernel is not preemptive, which means that a process can be preempted only while running in User Mode; nonpreemptive kernel design is much simpler, since most synchronization problems involving the kernel data structures are easily avoided.

How Long Must a Quantum Last?
The quantum duration is critical for system performances: it should be neither too long nor too short.

If the quantum duration is too short, the system overhead caused by task switches becomes excessively high. For instance, suppose that a task switch requires 10 milliseconds; if the quantum is also set to 10 milliseconds, then at least 50% of the CPU cycles will be dedicated to task switch.

If the quantum duration is too long, processes no longer appear to be executed concurrently. For instance, let's suppose that the quantum is set to five seconds; each runnable process makes progress for about five seconds, but then it stops for a very long time (typically, five seconds times the number of runnable processes).

It is often believed that a long quantum duration degrades the response time of interactive applications. This is usually false. Interactive processes have a relatively high priority, therefore they quickly preempt the batch processes, no matter how long the quantum duration is.

In some cases, a quantum duration that is too long degrades the responsiveness of the system. For instance, suppose that two users concurrently enter two commands at the respective shell prompts; one command is CPU-bound, while the other is an interactive application. Both shells fork a new process and delegate the execution of the user's command to it; moreover, suppose that such new processes have the same priority initially (Linux does not know in advance if an executed program is batch or interactive). Now, if the scheduler selects the CPU-bound process to run, the other process could wait for a whole time quantum before starting its execution. Therefore, if such duration is long, the system could appear to be unresponsive to the user that launched it.

The choice of quantum duration is always a compromise. The rule of thumb adopted by Linux is: choose a duration as long as possible, while keeping good system response time.

More Stories By Daniel Bovet

Daniel P. Bovet got a Ph.D. in computer science at UCLA in 1968 and is now full Professor at the University of Rome, "Tor Vergata," Italy.

More Stories By Marco Cesati

Marco Cesati got a degree in mathematics in 1992 and a Ph.D. in computer science (University of Rome, "La Sapienza") in 1995. He is now a research assistant in the computer science department of the School of Engineering (University of Rome, "Tor Vergata").

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
After making a doctor’s appointment via your mobile device, you receive a calendar invite. The day of your appointment, you get a reminder with the doctor’s location and contact information. As you enter the doctor’s exam room, the medical team is equipped with the latest tablet containing your medical history – he or she makes real time updates to your medical file. At the end of your visit, you receive an electronic prescription to your preferred pharmacy and can schedule your next appointment.
SYS-CON Events announced today that SafeLogic has been named “Bag Sponsor” of SYS-CON's 16th International Cloud Expo® New York, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. SafeLogic provides security products for applications in mobile and server/appliance environments. SafeLogic’s flagship product CryptoComply is a FIPS 140-2 validated cryptographic engine designed to secure data on servers, workstations, appliances, mobile devices, and in the Cloud.
The WebRTC Summit 2014 New York, to be held June 9-11, 2015, at the Javits Center in New York, NY, announces that its Call for Papers is open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 16th International Cloud Expo, @ThingsExpo, Big Data Expo, and DevOps Summit.
@ThingsExpo has been named the Top 5 Most Influential M2M Brand by Onalytica in the ‘Machine to Machine: Top 100 Influencers and Brands.' Onalytica analyzed the online debate on M2M by looking at over 85,000 tweets to provide the most influential individuals and brands that drive the discussion. According to Onalytica the "analysis showed a very engaged community with a lot of interactive tweets. The M2M discussion seems to be more fragmented and driven by some of the major brands present in the M2M space. This really allows some room for influential individuals to create more high value inter...
SYS-CON Events announced today the IoT Bootcamp – Jumpstart Your IoT Strategy, being held June 9–10, 2015, in conjunction with 16th Cloud Expo and Internet of @ThingsExpo at the Javits Center in New York City. This is your chance to jumpstart your IoT strategy. Combined with real-world scenarios and use cases, the IoT Bootcamp is not just based on presentations but includes hands-on demos and walkthroughs. We will introduce you to a variety of Do-It-Yourself IoT platforms including Arduino, Raspberry Pi, BeagleBone, Spark and Intel Edison. You will also get an overview of cloud technologies s...
Wearable technology was dominant at this year’s International Consumer Electronics Show (CES) , and MWC was no exception to this trend. New versions of favorites, such as the Samsung Gear (three new products were released: the Gear 2, the Gear 2 Neo and the Gear Fit), shared the limelight with new wearables like Pebble Time Steel (the new premium version of the company’s previously released smartwatch) and the LG Watch Urbane. The most dramatic difference at MWC was an emphasis on presenting wearables as fashion accessories and moving away from the original clunky technology associated with t...
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
SOA Software has changed its name to Akana. With roots in Web Services and SOA Governance, Akana has established itself as a leader in API Management and is expanding into cloud integration as an alternative to the traditional heavyweight enterprise service bus (ESB). The company recently announced that it achieved more than 90% year-over-year growth. As Akana, the company now addresses the evolution and diversification of SOA, unifying security, management, and DevOps across SOA, APIs, microservices, and more.
The list of ‘new paradigm’ technologies that now surrounds us appears to be at an all time high. From cloud computing and Big Data analytics to Bring Your Own Device (BYOD) and the Internet of Things (IoT), today we have to deal with what the industry likes to call ‘paradigm shifts’ at every level of IT. This is disruption; of course, we understand that – change is almost always disruptive.
GENBAND has announced that SageNet is leveraging the Nuvia platform to deliver Unified Communications as a Service (UCaaS) to its large base of retail and enterprise customers. Nuvia’s cloud-based solution provides SageNet’s customers with a full suite of business communications and collaboration tools. Two large national SageNet retail customers have recently signed up to deploy the Nuvia platform and the company will continue to sell the service to new and existing customers. Nuvia’s capabilities include HD voice, video, multimedia messaging, mobility, conferencing, Web collaboration, deskt...
The Open Compute Project is a collective effort by Facebook and a number of players in the datacenter industry to bring lessons learned from the social media giant's giant IT deployment to the rest of the world. Datacenters account for 3% of global electricity consumption – about the same as all of Switzerland or the Czech Republic -- according to people I met at the recent Open Compute Summit in San Jose. With increasing mobility at the edge of the cloud and vast new dataflows being predicted with the growth of the Internet of Things (and The Coming Age of Many Zettabytes) in the near...
SYS-CON Events announced today that Cisco, the worldwide leader in IT that transforms how people connect, communicate and collaborate, has been named “Gold Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Cisco makes amazing things happen by connecting the unconnected. Cisco has shaped the future of the Internet by becoming the worldwide leader in transforming how people connect, communicate and collaborate. Cisco and our partners are building the platform for the Internet of Everything by connecting the...
15th Cloud Expo, which took place Nov. 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA, expanded the conference content of @ThingsExpo, Big Data Expo, and DevOps Summit to include two developer events. IBM held a Bluemix Developer Playground on November 5 and ElasticBox held a Hackathon on November 6. Both events took place on the expo floor. The Bluemix Developer Playground, for developers of all levels, highlighted the ease of use of Bluemix, its services and functionality and provide short-term introductory projects that developers can complete between sessions.
Temasys has announced senior management additions to its team. Joining are David Holloway as Vice President of Commercial and Nadine Yap as Vice President of Product. Over the past 12 months Temasys has doubled in size as it adds new customers and expands the development of its Skylink platform. Skylink leads the charge to move WebRTC, traditionally seen as a desktop, browser based technology, to become a ubiquitous web communications technology on web and mobile, as well as Internet of Things compatible devices.
SYS-CON Events announced today that robomq.io will exhibit at SYS-CON's @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. robomq.io is an interoperable and composable platform that connects any device to any application. It helps systems integrators and the solution providers build new and innovative products and service for industries requiring monitoring or intelligence from devices and sensors.
WebRTC is an up-and-coming standard that enables real-time voice and video to be directly embedded into browsers making the browser a primary user interface for communications and collaboration. WebRTC runs in a number of browsers today and is currently supported in over a billion installed browsers globally, across a range of platform OS and devices. Today, organizations that choose to deploy WebRTC applications and use a host machine that supports audio through USB or Bluetooth can use Plantronics products to connect and transit or receive the audio associated with the WebRTC session.
Docker is an excellent platform for organizations interested in running microservices. It offers portability and consistency between development and production environments, quick provisioning times, and a simple way to isolate services. In his session at DevOps Summit at 16th Cloud Expo, Shannon Williams, co-founder of Rancher Labs, will walk through these and other benefits of using Docker to run microservices, and provide an overview of RancherOS, a minimalist distribution of Linux designed expressly to run Docker. He will also discuss Rancher, an orchestration and service discovery platf...
Sonus Networks introduced the Sonus WebRTC Services Solution, a virtualized Web Real-Time Communications (WebRTC) offer, purpose-built for the Cloud. The WebRTC Services Solution provides signaling from WebRTC-to-WebRTC applications and interworking from WebRTC-to-Session Initiation Protocol (SIP), delivering advanced real-time communications capabilities on mobile applications and on websites, which are accessible via a browser.
SYS-CON Events announced today that Aria Systems, the leading innovator in recurring revenue, has been named “Bronze Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Proven by the world’s most demanding enterprises, including AAA NCNU, Constant Contact, Falck, Hootsuite, Pitney Bowes, Telekom Denmark, and VMware, Aria helps enterprises grow their recurring revenue businesses. With Aria’s end-to-end active monetization platform, global brands can get to market faster with a wider variety of products and services, while maximizin...
SYS-CON Media announced today that @WebRTCSummit Blog, the largest WebRTC resource in the world, has been launched. @WebRTCSummit Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. @WebRTCSummit Blog can be bookmarked ▸ Here @WebRTCSummit conference site can be bookmarked ▸ Here